RAS PhysicsРадиотехника и электроника Journal of Communications Technology and Electronics

  • ISSN (Print) 0033-8494
  • ISSN (Online) 3034-5901

Analysis of diode mixers using the method of node potentials in generalized matrix form in the frequency domain. Part 2. Isolation between ports, miscondition effect, noise level

PII
10.31857/S0033849424020083-1
DOI
10.31857/S0033849424020083
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 2
Pages
167-179
Abstract
A method for theoretical analysis of “input-output” and “local oscillator-output” decouplings of three types of diode frequency converters is presented: balanced, double balanced, triple balanced. For two operating modes of the local oscillator – “non-intensive” and “intensive” – the dependences of the “input-output” decoupling of the balanced mixer on the load conductivity and on the amplitude of the local oscillator voltage were obtained. Theoretical analysis and modeling were carried out. It is shown that the error between the calculated results and the simulation results does not exceed 3 dB. Expressions are obtained for errors introduced by the technological spread of diode parameters, which make it possible to estimate the maximum achievable values of the mixer characteristics (transmission coefficient and port isolation). A method for analyzing the noise properties of mixers is presented, the output noise spectra are calculated for each of the circuit elements (input resistance, diodes and output resistance), and analytical expressions for noise coefficients are obtained. Theoretical noise figure estimates are confirmed by simulation results with an accuracy of 1 dB.
Keywords
диодные смесители метод узловых потенциалов передаточная функция коэффициент шума гетеродин балансная схема
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Korotkov A.S., Golovan O.A. // Radioelectronics and Communications Systems. 2022. V. 65. № 2. P. 81.
  2. 2. Henderson B. Microwave Mixer Technology and Applications. N. Y.: Artech House, 2013.
  3. 3. Аверина Л.И., Бобрешов А.М., Шапошникова Ж.В. // Вестн. Воронеж. гос. ун-та. Серия: Физика. Математика. 2011. № 1. С. 5.
  4. 4. Korotkov A., Golovan O. // 2021 Int. Symp. Signals, Circuits and Systems. Iasi. 15–16 Jul. 2021.N.Y.: IEEE, 2021. P. 9497452. https://doi.org/10.1109/ISSCS52333.2021.9497452
  5. 5. Roychowdhury J., Long D., Feldmann P. // IEEE J. Solid-State Circuits. 1998. V. 33. № 3. P. 324.
  6. 6. Darabi H., Abidi A.A. // IEEE J. Solid-State Circuits. 2015. V. 35. № 1. P. 15.
  7. 7. Nitsch J.B., Solovyeva E.B., Korovkin N.V., Scheibe H.-J. // IEEE Trans. 2008. V. EC-50. № 4. P. 887.
  8. 8. Головань О.А., Коротков А.С. // Проблемы разработки перспективных микро- и наноэлектронных систем (МЭС). 2022. № 3. С. 190.
  9. 9. Vitee N., Ramiah H., Mak P.-I., Yin J., Martins R.P. // IEEE Trans. 2020. V. VLSI-28. № 3. P. 700.
  10. 10. Mollaalipour M., Miar-Naimi H. // IEEE Trans.2016. V. VLSI-24. №6. P. 2275.
  11. 11. Jiang J., Holburn D.M. // Proc. Europ. Conf. on Circuit Theory and Design. Antalya, 23–27 Aug. 2009. N.Y.: IEEE, 2009. P. 675.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library