RAS PhysicsРадиотехника и электроника Journal of Communications Technology and Electronics

  • ISSN (Print) 0033-8494
  • ISSN (Online) 3034-5901

SPATIALLY SPACED THE META-INTERFEROMETER CONTAINS METASTRUCTURES CONTROLLED INDEPENDENTLY BY DIFFERENT METHODS: OPTICAL AND ELECTRICAL

PII
S30345901S0033849425060031-1
DOI
10.7868/S3034590125060031
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 6
Pages
556-563
Abstract
For controlled multichannel multiband microwave filtering and effective decoupling between signal and control channels and between control channels, a proposed and experimentally investigated meta-interferometer with spatially spaced 1 metastructures (as a beam splitter) and 2 (in a shorted -arm as a Fabry-Perot resonator reflector) controlled by independently by different methods: 1 — fiber-optically and 2 — electrically. The functional capabilities of a meta-interferometer with 1, containing a grating of parallel resonant dipoles with an orthogonally asymmetrically arranged copper strip (a CdS semiconductor plate in a gap), and with different 2 are shown: a butterfly dipole loaded with varactors and a dipole ring, as well as a grating with copper strip (varactor in a gap). The possibility of independent control of individual interferogram exclusion bands in accordance with the effects of resonant 1 responses (amplitude band transformation) and 2 (frequency transformation).
Keywords
мета-интерферометр полосы запрета интерферограммы пространственно разнесенные метаструктуры нагруженные варактором с электрическим управлением и CdS с оптическим управлением
Date of publication
08.12.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Cameron R., Kudsia C., Mansour R. Microwave Filters for Communication Systems: Fundamentals, Design, and Applications. Hoboken: John Wiley & Sons, 2018.
  2. 2. Lin Y.-C., Horng T.-S., Huang H.-H. // IEEE Trans. 2014. V. MIT-62. № 12. Pt. 2. P. 3351.
  3. 3. Girdhari C., Yongchae J., Jongsik L. // IEEE Trans. 2013. V.MTT-61. № 1. Pt. 1. P. 107.
  4. 4. Zhang X.Y., Gao L., Cao Y. et al. // Progress in Electromagnetics Research C. 2013. V. 42. P. 55.
  5. 5. Liu Q., Ge J., and Fok M.P. // Opt. Lett. 2018. V. 43. № 22. P. 5685.
  6. 6. Крафтмахер Г.А., Бутылкин В.С., Казанцев Ю.Н., Магцев В.П. // РЭ. 2019. Т. 64. № 11. С. 1070.
  7. 7. Крафтмахер Г.А., Бутылкин В.С., Казанцев Ю.Н. и др. // РЭ. 2021. Т. 66. № 2. С. 105.
  8. 8. Крафтмахер Г.А., Бутылкин В.С., Казанцев Ю.Н. и др. // РЭ. 2021. Т. 66. № 12. С. 1147.
  9. 9. Крафтмахер Г.А., Бутылкин В.С., Казанцев Ю.Н. и др. // РЭ. 2022. Т. 67. № 5. С. 430.
  10. 10. Крафтмахер Г.А., Бутылкин В.С., Казанцев Ю.Н. и др. // Письма в ЖЭТФ. 2021. Т. 114. № 9. С. 586. https://doi.org/10.31857/S1234567821210023
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library