ОФНРадиотехника и электроника Journal of Communications Technology and Electronics

  • ISSN (Print) 0033-8494
  • ISSN (Online) 3034-5901

АППАРАТНАЯ ОПТИМИЗАЦИЯ ФИЛЬТРОВ С КОНЕЧНОЙ ИМПУЛЬСНОЙ ХАРАКТЕРИСТИКОЙ

Код статьи
S30345901S0033849425050099-1
DOI
10.7868/S3034590125050099
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 70 / Номер выпуска 5
Страницы
506-515
Аннотация
Рассмотрены алгоритмы аппаратной реализации широко распространенных полуполосных фильтров (НВF, half-band filter), такие как алгоритм квантования коэффициентов (СQA, coefficient quantization algorithm), алгоритм умножения на константу (MCM, multiple constant multiplication) и их объединение CQA+MCM. Применение алгоритма CQA позволяет уменьшить количество умножителей в схеме НВF фильтра. Алгоритм MCM позволяет пересчитать умножители в набор сумматоров и битовых сдвигов. Объединение двух алгоритмов позволяет заменить все умножители на набор сумматоров и битовых сдвигов. Проведен расчет ресурсов, необходимых для аппаратной реализации НВF фильтров 30 и 94 порядков, и было выяснено, что применение CQA алгоритма позволяет сократить число умножителей на 37 % и 74 %. Применение MCM алгоритма позволяет полностью убрать умножители из схемы фильтра, однако число сумматоров увеличивается в 3 и 2.6 раз соответственно. Проведено сравнение предложенных методов с уже существующими показало, что время, требуемое для расчета коэффициентов оптимизированного фильтра, для предложенных алгоритмов составляет несколько секунд, в то время как для большинства других методов требуется гораздо больше времени (вплоть до суток). Показано, что разница в числе требуемых ресурсов не превышает 10 %.
Ключевые слова
фильтры с конечной импульсной характеристикой цифровые передискретизаторы аппаратная оптимизация
Дата публикации
07.12.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
15

Библиография

  1. 1. Omeneetku A., Шафер P. Цифровая обработка сигналов. М.: Техносфера, 2012.
  2. 2. Rabiner L., Schafer R. // IEEE Trans. 1971. V. AE-19. № 3. Р. 200. https://doi.org/10.1109/TAU.1971.1162185
  3. 3. San-Jose-Revuelta L.M., Arribas J.I. // Expert Systems with Applications. 2018. V. 106. Р. 92.
  4. 4. Selesnick I. Linear-Phase FIR Filter Design by Least Squares /EL 713. Lecture Notes. N.Y.: New York Univ., 2005. 39 p. https://eeweb.engineering.nyu.edu/ iselesni/EL713/firis/firis.pdf
  5. 5. Aggarwal A., Rawat T.K., Kumar M., Upadhyay D.K. Design of optimal band-stop FIR filter using L1 norm based RCGA // Ain Shams Engineering J. 2018. V. 9. № 2. Р. 277.
  6. 6. McClellan J., Parks T., Rabiner L. // IEEE Trans. 1973. V.AE-21. № 6. Р. 506.
  7. 7. Aksoy L., Flores P., Monteiro J. // IEEE Trans. 2014. V. SP-63. № 1. Р. 142.
  8. 8. Kumm M., Volkova A., Filip S.-I. // IEEE Trans. 2023. V. CAD-42. № 2. Р. 658. https://doi.org/10.1109/TCAD.2022.3179221
  9. 9. Xu F., Chang C.H., Jong C.C. // IEEE Trans. 2007. V. CAD-26. № 10. Р. 1898.
  10. 10. Shi D., Yu Y.J. // IEEE Trans. 2011. V. CS-58. № 1. Р. 126.
  11. 11. Gustafsson O., Wanhammer L. // Proc. 2002 45 th Midwest Symp. Circuits and Systems (MSCAS). Tusla. 04–07 Aug. N.Y.: IEEE, 2002. V. 3. Р. 9.
  12. 12. Yu Y.J., Lim Y.C. // Circuits, Systems, Signal Processing. 2010. V. 29. № 1. Р. 65.
  13. 13. Yli-Kaakinen J., Saramaki T. // Proc. 2001 IEEE Int. Symp. Circuits and Systems (ISCAS). Sydney. 09 May. N.Y.: IEEE, 2001. Р. 185.
  14. 14. Shaheim A., Zhang Q., Lotze N., Manoli Y. // IEEE Trans. 2012. V. CS(I) – 59. № 3. Р. 616.
  15. 15. Aktan M., Yurdakul A., Diudar G. // IEEE Trans. 2008. V. CS-55. № 6. Р. 1536.
  16. 16. Chen C.-L., Willson A.N., Jr. // IEEE Trans. 1999. V. СБ(Щ)-46. № 1. Р. 29.
  17. 17. Aksoy L., Güneş E.O., Flores P. // Microprocessors and Microsystems. 2010. V. 34. № 5. Р. 151.
  18. 18. Degtyarev A., Saifullin K., Bakhurin S. // 2022 24th Int. Conf. on Digital Signal Processing and its Applications (DSPA). Moscow, 30 Mar. – 01 Apr. N.Y.: IEEE, 2022. Paper No. 9790772.
  19. 19. Bakholdin N., Degtyarev A., Bakhurin S. // 2023 5th Int. Youth Conf. on Radio Electronics, Electrical and Power Engineering (REEPE). Moscow. 16–18 Mar. N.Y.: IEEE, 2023. Paper No. 10086717.
  20. 20. Солошина А.И. Цифровая обработка сигналов. Моделирование в Simulink. СПб.: БХВ-Петербург, 2012.
  21. 21. Thong J., Nicolici N. // IEEE Trans. 2011. V. CAD-30. № . 9. P. 1373.
  22. 22. Boudjelaba K., Ros F., Chikouche D. // IET Signal Processing. 2014. V. 8. P. 429.
  23. 23. Aksoy L., Flores P., Monteiro J. // 2014 IEEE Int. Symp. on Circuits and Systems (ISCAS). Melbourne, 01–05 Jun. N.Y.: IEEE, 2014. P. 1456.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека