RAS PhysicsРадиотехника и электроника Journal of Communications Technology and Electronics

  • ISSN (Print) 0033-8494
  • ISSN (Online) 3034-5901

FORMATION OF NON-TRANSMITTANCE BANDS IN THIN-FILM LOOPING YIG MICROWAVE CHANNEL

PII
S30345901S0033849425050042-1
DOI
10.7868/S3034590125050042
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 5
Pages
456-463
Abstract
The present study is dedicated to the examination of the effects that occur in the propagation of spin waves (SW) in a thin film looping microwave formed from yttrium iron garnet (YIG). Utilizing the numerical solution of the Landau-Lifshitz-Gilbert (LLG) equation of magnetization motion, the spectra of SWs excited and propagating along a waveguide structure formed by periodically recurrent articulations of sections of the YIG microwave at different angles are investigated. It is demonstrated that the «zigzag» structure has the capacity to form zones of non-transmittance in the spectrum. Conclusions are drawn from the analysis of amplitude-frequency characteristics, which indicate the potential for controlling the number and depth of opacity zones by varying the number and angles of inclination of the waveguide sections. The findings of this study contribute to the advancement of knowledge in the domain of physical effects associated with opacity band formation in irregular magnetic structures, paving the way for the development of microwave signal filters that are controlled by magnetic fields.
Keywords
спиновые волны магноника петляющий микроволновод многотерминальные СВЧ-устройства
Date of publication
08.12.2025
Year of publication
2025
Number of purchasers
0
Views
16

References

  1. 1. Gubbiotti G., Barman A., Ladak S. et al. // J. Phys.: Cond. Matt. 2024. V. 37. № 14. Article No. 143502.
  2. 2. Vedmedenko E.V., Kawakami R.K., Sheka D.D. et al. // J Phys. D: Appl. Phys. 2020. V. 53. № 45. ArticleNo. 453001.
  3. 3. Sander D., Valenzuel S.O., Makarov D. et al. // J Phys. D: Appl. Phys. 2017. V. 50. № 36. Article No. 363001.
  4. 4. Kruglyak V.V., Demokritov S.O., Grundler D. // J Phys. D: Appl. Phys.2010. V. 43. № 26. Article No. 264001.
  5. 5. Sadovnikov A.V., Grachev A.A., Sheshukova S.E. et al. // Phys. Rev. Lett. 2018. V. 120. № 25. P. 257203.
  6. 6. Vansteenkiste A., Van de Wiele B. // J. Magn. and Magn. Mater. 2011. V. 323. № 21. P. 2585.
  7. 7. Vansteenkiste A., Leliaertl., Dvornik M. et al. // AIP Advances. 2014. V. 4. № 10. P. 107133.
  8. 8. Никитов С.А., Калябин Д.В., Лисецков И.В. и др. // Успехи физ. наук. 2015. T. 185. № 10. C. 1099.
  9. 9. Serga A.A., Chumak A.V., Hillebrands B. // J. Phys.: Appl. Phys. 2010. V. 43. № 26. P. 264002.
  10. 10. Ustinov A.B., Lähderanta E., InoueM., Kalinikos B.A. // IEEE Magnetics Lett. 2019. V. 10. Article No. 5508204.
  11. 11. Никитов С.А., Сафин А.Р., Калябин Д.В. и др. // Успехи физ. наук. 2020. T. 190. № 10. C. 1009.
  12. 12. Sadovnikov A.V., Grachev A.A., Sheshukova S.E. et al. // Phys. Rev. Lett. 2018. V. 120. № 25. P. 257203.
  13. 13. O’Keefe T.W., Patterson R.W. // J. Appl. Phys. 1978. V. 49. № 9. P. 4886.
  14. 14. Stancil D.D., Prabhakar A. Spin Waves. Theory and Applications. Berlin: Springer, 2009.
  15. 15. Damon R.W., Eshbach J.R. // J. Phys. Chem. Solids. 1961. V. 19. № 3–4. P. 308.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library