RAS PhysicsРадиотехника и электроника Journal of Communications Technology and Electronics

  • ISSN (Print) 0033-8494
  • ISSN (Online) 3034-5901

BIAS-CONTROLLED DIPOLE SPIN-WAVE COUPLING IN LATERAL MAGNETIC MICROSTRUCTURES

PII
S30345901S0033849425050033-1
DOI
10.7868/S3034590125050033
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 5
Pages
447-455
Abstract
The interaction of spin waves propagating as directional modes in microwaves based on iron-vitrium garnet films has been examined. The configuration consists of three microwaves arranged in parallel, with air gaps separating them, allowing for the coupling between them. The source of this coupling is attributed to the long-range dynamic sagging (dipole) field of the precessing magnetization vector. A methodology is put forward to regulate the properties of this coupling by modulating the angle of the static magnetization with respect to the principal axes of the geometry. Micromagnetic modeling was employed to demonstrate the sub-magnetization angle-controlled propagation of spin waves along lateral microwaves. As a consequence of micromagnetic modeling, spin wave propagation spectra were obtained. The subsequent analysis of these spectra revealed that lateral microwaves can function as functional elements in planar magnonic networks, serving as directional taps, spin wave multiplexers, or microwave power dividers. Furthermore, the study demonstrated the capability to control spin wave routing between the microwaves («magnetic channels») through the modulation of the external magnetic field angle.
Keywords
спиновые волны эпитаксиальные пленки железоиттриевого граната спинтроника магноника латеральные структуры
Date of publication
08.12.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. Wang Q., Pirro P., Verba R. et al. // Science Advances. 2018. V. 4. № 1. Article No. 1701517.
  2. 2. Ustinov A.B., Lähderanta E., Inoue M. et al. // IEEE Magn. Lett. 2019. V. 10. Article No. 5508294.
  3. 3. Barman A., Gubbiotti G., Ladak S. et al. // J. Phys.: Cond. Matt. 2021. V. 33. № 41. P. 413001.
  4. 4. Sadovnikov A.V., Beginin E.N., Sheshukova S.E. et al. // Phys. Rev. B. 2019. V. 99. № 5. P. 054424.
  5. 5. Sadovnikov A.V., Grachev A.A., Serdobintsev A.A. et al. // IEEE Magn. Lett. 2019. V. 10. Article No. 5506405.
  6. 6. Kalyabin D.V., Sadovnikov A.V., Beginin E.N., Nikitov S.A. // J. Appl. Phys. 2019. V. 126. № 17. P. 173907.
  7. 7. Hukumos C.A., Cadpur A.P., Kazafouu J.B. u dp. // Yerevan ghts. наук. 2020. T. 190 № 10. C. 1009.
  8. 8. Tacchi S., Gruszecki P., Madami M. et al. // Scientific Reports. 2015. V. 5. № 1. Article No. 10367.
  9. 9. Flebus B., Grundler D., Rana B. et al. // J. Phys.: Cond. Matt. 2024. V. 36. № 36. P. 363501.
  10. 10. Eveli M., Demidov V.E., Bessonov V. et al. // Appl. Phys. Lett. 2016. V. 108. № 17. P. 172406.
  11. 11. Vogel M., Chumak A.V., Waller E.H. et al. // Nature Physics. 2015. V. 11. № 6. P. 487.
  12. 12. Cadomukova A.B., Ipavea A.A., Oduunga C.A. u dp. // Письма в ЖЭТФ. 2018. T. 108. № 5. C. 332.
  13. 13. Demokritov S.O. Topology in Magnetism/Eds.by J. Zang, V. Cros, A. Hoffmann. Cham: Springer, 2018. P. 299.
  14. 14. Khivintsev Y.V., Sakharov V.K., Kozhevnikov A.V. et al. // J. Magn. Magn. Mater. 2022. V. 545. Article No.168754.
  15. 15. Borys P., Kolokoltsov O., Iván Gómez-Arista I. et al. // J. Magn. Magn. Material. 2020. V. 498. Article No. 166154.
  16. 16. Vogel M., Abmann R., Pirro P. et al. // Scientific Reports. 2018. V. 8. № 1. Article No. 11099.
  17. 17. Whitehead N.J., Horsley S.A.R., Philbin T.G., Kruglyak V.V. // Appl. Phys. Lett.2018. V. 113. № 21. P. 212404.
  18. 18. Dyapko O., Borisenko I.V., Demidov V.E. et al. // Appl. Phys. Lett. 2016. V. 109. № 23. P. 232407.
  19. 19. O’Keefe T.W., Patterson R.W. // J. Appl. Phys. 1978. V. 49. № 9. P. 4886.
  20. 20. Kostylev M.P., Serga A.A., Schneider T. et al. // Phys.l Revl. B. 2007. V. 76. № 18. P. 184419.
  21. 21. Stancil D.D., Probhakar A. Spin Waves. Berlin: Springer, 2009.
  22. 22. Damon R.W., Eshbach J.R. // J. Phys. Chem. Solids. 1961. V. 19. № 3–4. P. 308.
  23. 23. Sadovnikov A.V., Beginin E.N., Sheshukova S.E. et al. // Appl. Phys. Lett. 2015. V. 107. № 20. P. 202405.
  24. 24. Vansteenkiste A., Leliaert J., Dvornik M. et al. // AIP Advances. 2014. V. 4. № 10. P. 107133.
  25. 25. Iypeau A.T., Menkoe I.A. Магнитные колебания и волны. М.: Физматгиз, 1994.
  26. 26. Kostylev M.P., Stashkevich A.A., Sergeeva N.A. // Phys. Rev. B. 2004. V. 69. № 6. P. 064408.
  27. 27. Buttner O., Bauer M., Mathieu C. et al. // IEEE Trans. 1998. V.MAG-34. № 4. P. 1381.
  28. 28. Aharoni A. // J. Appl. Phys. 1998. V. 83. № 6. P. 3432
  29. 29. Schabes M., Aharoni A. // IEEE Trans.1987. V. MAG-23. № 6. P. 3882.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library