RAS PhysicsРадиотехника и электроника Journal of Communications Technology and Electronics

  • ISSN (Print) 0033-8494
  • ISSN (Online) 3034-5901

Effect of an Inviscid Nonconducting Liquid on the Absorption of Lamb Waves in Piezoelectric Plates

PII
S3034590125080082-1
DOI
10.7868/S3034590125080082
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 8
Pages
780-786
Abstract
The dependence of the Lamb wave attenuation due to radiation into an inviscid nonconducting liquid (radiation losses) on 1) the ratio of the phase velocities of the waves in the plate V and the liquid V and on 2) the ratio of the vertical component of the surface displacement U to the horizontal U in the wave of the considered number n has been experimentally investigated. It is shown that the dominant value in the formation of radiation losses is U/U: for small U/U  1, the emission of Lamb waves into a liquid and the magnitude of radiation losses are small even at V  V, for large U/U ≥ 1, radiation into a liquid and the magnitude of radiation losses are large and can reach values comparable to with those for surface acoustic waves in the same material (~5 dB/mm). The dependence of the Lamb wave attenuation on the ratio of the velocities V and V is much weaker.
Keywords
волны Лэмба радиационные потери нормальная компонента смещения
Date of publication
01.08.2025
Year of publication
2025
Number of purchasers
0
Views
42

References

  1. 1. Фрайден Дж. Мир электроники. Современные датчики. Справочник. М.: Техносфера, 2006.
  2. 2. Викторов И.А. / Физические основы применения ультразвуковых волн Рэлея и Лэмба в технике. М.: Наука, 1966.
  3. 3. Kuznetsova I.E., Zaitsev B.D., Borodina I.A. et al. // Ultrasonics. 2004. V. 42. № 1–9. P. 179. https://doi.org/10.1016/j.ultras.2004.01.006
  4. 4. Smirnov A., Anisimkin V., Voronova N. et al. // Sensors. 2022. V. 22. № 19. Article No. 7231. https://doi.org/10.3390/s22197231
  5. 5. Caliendo C. // Sensors. 2015. V. 15. № 6. P. 12841. https://doi.org/10.3390/s150612841
  6. 6. Terakawa Y., Kondoh J. // Jap. J. Appl. Phys. 2020. V. 59. № SK. Article No. SKKC08. https://doi.org/10.35848/1347-4065/ab84ae
  7. 7. White R.M., Wicher P.J., Wenzel S.W., Zellers E.T. // IEEE Trans. 1987. V. UFFC-34. № 2. P. 162. https://doi.org/10.1109/T-UFFC.1987.26928
  8. 8. Кузнецова И.Е., Зайцев Б.Д., Джоши С.Г., Теплых А.А. // Акуст. журн. 2007. Т. 53. № 5. С. 637.
  9. 9. Anisimkin I.V., Anisimkin V.I. // IEEE Trans. 2006. V. UFFC-53. № 8. P. 1487. https://doi.org/10.1109/TUFFC.2006.1665106
  10. 10. Hamidullah M., Elie-Caille C., Leblois T. // J. Phys. D: Appl. Phys. 2022. V. 55. № 9. P. 094003. https://doi.org/10.1088/1361–6463/ac39c5
  11. 11. Mansoorzare H., Shahraini S., Todi A. et al. // IEEE Trans. 2020. V. UFFC-67. № 6. P. 1210. https://doi.org/10.1109/TUFFC.2019.2955402
  12. 12. Anisimkin V., Shamsutdinova E., Li P. et al. // Sensors 2022. V. 22. № 7. Article No. 2727. https://doi.org/10.3390/s22072727
  13. 13. Anisimkin V.I., Voronova N.V. // Ultrasonics. 2021. V. 116. Article No. 106496. https://doi.org/10.1016/j.ultras.2021.106496
  14. 14. Anisimkin V., Kolesov V., Kuznetsova A. et al. // Sensors. 2021. V. 21. № 3. Article No. 919. https://doi.org/10.3390/s21030919
  15. 15. Агейкин Н.А., Анисимкин В.И., Воронова Н.В., Смирнов А.В.// РЭ. 2023. Т. 68. № 10. С. 1030.
  16. 16. Smirnov A., Anisimkin V., Ageykin N. et al.// Sensors 2024. V. 24. № 24. Article No. 7969. https://doi.org/10.3390/s24247969
  17. 17. Adler E.L., Slaboszewics J.K., Farnell G.W., Jen C.K. // IEEE Trans. 1990. V. UFFC-37. № 3. P. 215.
  18. 18. Slobodnik A.J.Jr., Conway E.D., Delmonico R.T. // J. Acoust. Soc. Amer. 1974. V. 56. № 4. P. 1307.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library