- PII
- S3034590125080082-1
- DOI
- 10.7868/S3034590125080082
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 70 / Issue number 8
- Pages
- 780-786
- Abstract
- The dependence of the Lamb wave attenuation due to radiation into an inviscid nonconducting liquid (radiation losses) on 1) the ratio of the phase velocities of the waves in the plate V and the liquid V and on 2) the ratio of the vertical component of the surface displacement U to the horizontal U in the wave of the considered number n has been experimentally investigated. It is shown that the dominant value in the formation of radiation losses is U/U: for small U/U 1, the emission of Lamb waves into a liquid and the magnitude of radiation losses are small even at V V, for large U/U ≥ 1, radiation into a liquid and the magnitude of radiation losses are large and can reach values comparable to with those for surface acoustic waves in the same material (~5 dB/mm). The dependence of the Lamb wave attenuation on the ratio of the velocities V and V is much weaker.
- Keywords
- волны Лэмба радиационные потери нормальная компонента смещения
- Date of publication
- 01.08.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 42
References
- 1. Фрайден Дж. Мир электроники. Современные датчики. Справочник. М.: Техносфера, 2006.
- 2. Викторов И.А. / Физические основы применения ультразвуковых волн Рэлея и Лэмба в технике. М.: Наука, 1966.
- 3. Kuznetsova I.E., Zaitsev B.D., Borodina I.A. et al. // Ultrasonics. 2004. V. 42. № 1–9. P. 179. https://doi.org/10.1016/j.ultras.2004.01.006
- 4. Smirnov A., Anisimkin V., Voronova N. et al. // Sensors. 2022. V. 22. № 19. Article No. 7231. https://doi.org/10.3390/s22197231
- 5. Caliendo C. // Sensors. 2015. V. 15. № 6. P. 12841. https://doi.org/10.3390/s150612841
- 6. Terakawa Y., Kondoh J. // Jap. J. Appl. Phys. 2020. V. 59. № SK. Article No. SKKC08. https://doi.org/10.35848/1347-4065/ab84ae
- 7. White R.M., Wicher P.J., Wenzel S.W., Zellers E.T. // IEEE Trans. 1987. V. UFFC-34. № 2. P. 162. https://doi.org/10.1109/T-UFFC.1987.26928
- 8. Кузнецова И.Е., Зайцев Б.Д., Джоши С.Г., Теплых А.А. // Акуст. журн. 2007. Т. 53. № 5. С. 637.
- 9. Anisimkin I.V., Anisimkin V.I. // IEEE Trans. 2006. V. UFFC-53. № 8. P. 1487. https://doi.org/10.1109/TUFFC.2006.1665106
- 10. Hamidullah M., Elie-Caille C., Leblois T. // J. Phys. D: Appl. Phys. 2022. V. 55. № 9. P. 094003. https://doi.org/10.1088/1361–6463/ac39c5
- 11. Mansoorzare H., Shahraini S., Todi A. et al. // IEEE Trans. 2020. V. UFFC-67. № 6. P. 1210. https://doi.org/10.1109/TUFFC.2019.2955402
- 12. Anisimkin V., Shamsutdinova E., Li P. et al. // Sensors 2022. V. 22. № 7. Article No. 2727. https://doi.org/10.3390/s22072727
- 13. Anisimkin V.I., Voronova N.V. // Ultrasonics. 2021. V. 116. Article No. 106496. https://doi.org/10.1016/j.ultras.2021.106496
- 14. Anisimkin V., Kolesov V., Kuznetsova A. et al. // Sensors. 2021. V. 21. № 3. Article No. 919. https://doi.org/10.3390/s21030919
- 15. Агейкин Н.А., Анисимкин В.И., Воронова Н.В., Смирнов А.В.// РЭ. 2023. Т. 68. № 10. С. 1030.
- 16. Smirnov A., Anisimkin V., Ageykin N. et al.// Sensors 2024. V. 24. № 24. Article No. 7969. https://doi.org/10.3390/s24247969
- 17. Adler E.L., Slaboszewics J.K., Farnell G.W., Jen C.K. // IEEE Trans. 1990. V. UFFC-37. № 3. P. 215.
- 18. Slobodnik A.J.Jr., Conway E.D., Delmonico R.T. // J. Acoust. Soc. Amer. 1974. V. 56. № 4. P. 1307.