RAS PhysicsРадиотехника и электроника Journal of Communications Technology and Electronics

  • ISSN (Print) 0033-8494
  • ISSN (Online) 3034-5901

Method for Converting Speech Signal to Improve Speech Intelligibility

PII
S3034590125080062-1
DOI
10.7868/S3034590125080062
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 8
Pages
753-760
Abstract
The task of improving the speech intelligibility in communication systems is considered. The acute problem of speaker voice recognition when using known methods for solving it is pointed out. To overcome this problem, new method for converting a speech signal is proposed. It based on an autoregressive model of the vocal tract and on the principle of frequency-selective amplification of the main formants. An example of the practical implementation of a new method based on the fast Fourier transform is considered. Estimates of computational costs and its performance are given. A full-scale experiment was set up and carried out. Based on its results, the positive effect achieved by applying the proposed method was established, namely: increasing the intelligibility of the speech of the control speaker while maintaining a sufficiently high degree of recognition of his voice. The results obtained are intended for use in the development of new and modernization of existing voice communication systems, including a mobile communication and VoIP-systems.
Keywords
теория сигналов речевой сигнал цифровая обработка речи голосовой тракт авторегрессионная модель речевая связь мобильная связь
Date of publication
01.08.2025
Year of publication
2025
Number of purchasers
0
Views
30

References

  1. 1. Rabiner L.R., Schafer R.W. // Foundations and Trends in Signal Processing. 2007. V. 1. № 1–2. P. 1. https://doi.org/10.1561/2000000001
  2. 2. Mehrish A., Majumder N., Bharadwaj R. et al. // Information Fusion. 2023. V. 99. Article No. 101869. https://doi.org/10.1016/j.inffus.2023.101869
  3. 3. Sankar M.S., Sathidevi P.S. // Circuits Systems Signal Process. 2023. V. 42. P. 3437. https://doi.org/10.1007/s00034-022-02277-z
  4. 4. Anselam A.S., Pillai S.S., Sreeni K.G. Advances Communication Systems and Networks. Selected Proceedings of ComNet2019/Eds. by J. Jayakumari, G. K. Karagiannidis, M. Ma, S. A. Hossain. Singapore: Springer, 2020. P. 625. https://doi.org/10.1007/978-981-15-3992-3_53
  5. 5. Togawa T., Otani T., Suzuki K., Taniguchi T. // APSIPA Trans. on Signal and Information Processing. 2015. V. 4. Article No. e14. https://doi.org/10.1017/ATSIP.2015.3
  6. 6. Narendra N.P., Alku P. // Speech Commun. 2019. V. 110. P. 47. https://doi.org/10.1016/j.specom.2019.04.003
  7. 7. O’Shaughnessy D. // IEEE Trans. 2024. V. HMS-54. № 1. P. 110. https://doi.org/10.1109/THMS.2023.3339663
  8. 8. Ngo Th., Kubo R., Akagi M. // Speech Commun. 2021. V. 135. P. 11. https://doi.org/10.1016/j.specom.2021.09.004
  9. 9. Zheng C., Zhang H., Liu W. et al. // Trends in Hearing. 2023. V. 27. Article No. 23312165231209913 https://doi.org/10.1177/23312165231209913
  10. 10. Jolad B., Khanai R. // Int. J. Speech Technology. 2023. V. 26. P. 287. https://doi.org/10.1007/s10772-023-10019-y
  11. 11. Kolbæk M., Tan Z.H., Jensen S.H., Jensen J. // IEEE/ACM Trans. 2020. V. ASLP-28. P. 825. https://doi.org/10.1109/TASLP.2020.2968738
  12. 12. Deng F., Bao Ch. // Speech Commun. 2016. V. 79. P. 30. https://doi.org/10.1016/j.specom.2016.02.006
  13. 13. Cавченко В.В., Савченко Л.В. // РЭ. 2021. Т. 66. № 11. C. 1100. https://doi.org/10.31857/S0033849421110085
  14. 14. Cавченко В.В., Савченко Л.В. // РЭ. 2024. Т. 69. № 4. С. 339. https://doi.org/10.31857/S0033849424040056
  15. 15. Gibson J. //Information. 2019. V. 10. № 5. P. 179. https://doi.org/10.3390/info10050179
  16. 16. Cавченко В.В., Савченко Л.В. // РЭ. 2023. Т. 68. № 7. С. 660. https://doi.org/10.31857/S0033849423060128
  17. 17. Ternström S. // Appl. Sciences. 2023. V. 13. № 6. P. 3514. https://doi.org/10.3390/app13063514
  18. 18. Cавченко В.В., Савченко Л.В. // Измерительная техника. 2024. № 5. С. 54. https://doi.org/10.32446/0368-1025it.2024-5-54-63
  19. 19. Ito M., Ohara K., Ito A., Yano M. // Proc. 11th Annual Conf. Int. Speech Commun. Association (INTERSPEECH 2010). Makuhari. 26–30 Sept. N.Y.: Curran Associates, Inc., 2011. V.4. P. 2494. https://doi.org/10.21437/Interspeech.2010–669
  20. 20. Cавченко А.В., Савченко В.В. // РЭ. 2022. T. 67. № 3. C. 286. https://doi.org/10.31857/S0033849422030135
  21. 21. Palaparthi A., Titze I.R. // Speech Commun. 2020. V. 123. P. 98. https://doi.org/10.1016/j.specom.2020.07.003
  22. 22. Cавченко В.В., Савченко Л.В. // Измерительная техника. 2024. № 2. C. 55. https://doi.org/10.32446/0368-1025it.2024-2-55-62
  23. 23. Tohyama M. Acoustic Signals and Hearing. A TimeEnvelope and Phase Spectral Approach. L.: Academic Press, 2020. P. 89. https://doi.org/10.1016/B978-0-12-816391-7.00013-9
  24. 24. Alku P., Kadiri S.R., Gowda D. // Computer Speech & Language. 2023. V. 81. Article No. 101515. https://doi.org/10.1016/j.csl.2023.101515
  25. 25. Kathiresan Th., Maurer D., Suter H., Dellwo V. // J. Acoust. Soc. Amer. 2018. V. 143. № 3. P. 1919. https://doi.org/10.1121/1.5036258
  26. 26. Tokuda I.T. Oxford Research Encyclopedia of Linguistics. Oxford: Univ. Press, 2021. P. oxfordre.com/linguistics/view/10.1093/acrefore/9780199384655.001.0001/acrefore-9780199384655-e-894
  27. 27. Kim H.S. Linear Predictive Coding is All-Pole Resonance Modeling. Stanford Univ. Center for Computer Research in Music and Acoustics, 2023. 7 p. ccrma.stanford.edu/~hskim08/lpc/lpc.pdf
  28. 28. Jesus L., Castilho S., Ferreira A., Costa M.C. // J. Phonetics. 2023. V. 97. Article No. 101223. https://doi.org/10.1016/j.wocn.2023.101223
  29. 29. Gustafsson Ph.U., Laukka P., Lindholm T. // Speech Commun. 2023. V. 146. P. 82. https://doi.org/10.1016/j.specom.2022.12.001
  30. 30. Savchenko V.V. // Radioelectronics and Communications Systems. 2021. V. 64. № 11. P. 592. https://doi.org/10.3103/S0735272721110030
  31. 31. Corey R.M., Kozat S.S., Singer A.C. Signal Processing and Machine Learning Theory/Ed. by P.S.R. Diniz. L.: Academic Press. 2024. P. 689. https://doi.org/10.1016/B978-0-32-391772-8.00017-X
  32. 32. Marple S.L.Jr. Digital Spectral Analysis with Applications. Mineola: Dover Publications. 2019.
  33. 33. Kuhn K., Kersken V., Reuter B. et al.// ACM Trans. on Accessible Computing. 2024. V. 16. № 4. Article No. 25 https://doi.org/doi.org/10.1145/3636513
  34. 34. Palani S. Principles of Digital Signal Processing. Cham: Springer 2022. https://doi.org/10.1007/978-3-030-96322-4
  35. 35. Cавченко В.В. // Измерительная техника. 2023. № 10. С. 63. https://doi.org/10.32446/0368-1025it.2023-10-63-69
  36. 36. Cавченко В.В., Савченко А.В. // РЭ. 2020. Т. 65. № 11. С. 1101. https://doi.org/10.31857/S0033849420110157
  37. 37. Omer D.S., Hussein M.A. & Mina L.M. // J. Engineering. 2020. V. 26. № 10. P. 135. https://doi.org/10.31026/j.eng.2020.10.10
  38. 38. Esra A.J.S., Sukhi Y. // Computer Speech & Language. 2024. V. 84. Article No. 101554. https://doi.org/10.1016/j.csl.2023.101554
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library