RAS PhysicsРадиотехника и электроника Journal of Communications Technology and Electronics

  • ISSN (Print) 0033-8494
  • ISSN (Online) 3034-5901

ABOUT PROPAGATION OF GAUSSIAN ELECTROMAGNETIC PULSE IN A RESONANTLY ABSORBING GAS MEDIUM

PII
S3034590125080028-1
DOI
10.7868/S3034590125080028
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 8
Pages
719-729
Abstract
Based on direct and without simplifying assumptions calculation of the Fourier integral, the analysis of the process of the passage of terahertz pulses with Gaussian envelope and amplitude spectrum belonging to the frequency interval occupied by the spectral line, through the layer of resonantly absorbing medium was made. The interaction of the medium and the pulse is described by Drude-Lorenz model. It is shown that with an increase in the optical depth of the medium layer, the current envelope of the radiation field recorded at the receiving end of the path is increasingly affected by the interference effect of harmonics of individual sections of the current pulse spectrum, which leads to its fundamental deformation, but not to its systematic shift towards negative time values. Analysis of the integral characteristics of the received radiation field also does not agree with the conclusions corresponding to the first approximation of the dispersion theory. Methods are proposed for eliminating oscillations of the envelope of the received pulse by shifting the carrier and changing the bandwidth of the receiving device.
Keywords
резонансно-поглощающая среда гауссовский импульс деформация огибающей
Date of publication
01.08.2025
Year of publication
2025
Number of purchasers
0
Views
36

References

  1. 1. Bиноградова М.Б., Руденко О.В., Сухоруков А.П. Теория волн. М.: Наука, 1979.
  2. 2. Peatross J., Glasgow S.A., Ware M. // Phys. Rev. Letters. 2000. V. 84. № 11. P. 2370.
  3. 3. Macke B., Segard B. // Europ. Phys. J. D. 2003. V. 23. P. 125.
  4. 4. Stenner M.D., Gauthier D.J., Neifeld M.A. // Nature. 2003. V. 425. № 6965. P. 695.
  5. 5. Boyd R.W. // J. Mod. Phys. 2009. V. 56. № 18–19. P. 1908.
  6. 6. Pinhasi Y., Yahalom A., Pinhasi G.A. // J. Opt. Soc. Amer. B. 2009. V. 26. № 12. P. 2404.
  7. 7. Nanda L., Wanare H., Ramakrishna S.A. // Phys. Rew. A. 2009. V. 79. № 4. P. 041806.
  8. 8. Бухман Н. С. // РЭ. 2021. Т. 66. № 3. C. 209.
  9. 9. Малыкин Г.Б., Романец Е.А. // Оптика и спектроскопия. 2012. Т. 112. № 6. C. 993.
  10. 10. Akulshin A.M., McLean R.J. // J. Opt. 2010. V. 12. № 10. P. 104001.
  11. 11. Withayachumnankul W., Fisher B.M., Ferguson B. et al. // Proc. IEEE. 2010. V. 98. № 10. P. 1775.
  12. 12. Гинзбург В.Л. Распространение электромагнитных волн в плазме. М.: Наука, 1967. C. 349.
  13. 13. Харкевич А.А. Спектры и анализ. М.: Физиатрия, 1962.
  14. 14. Стрелков Г.М., Худышев Ю.С. // РЭ. 2023. Т. 68. № 1. C. 37.
  15. 15. Багров В.Г., Клименко Ю.И. // Вестн. МГУ. Сер.3. Физика. Астрономия. 1969. № 3. C. 104.
  16. 16. Королев В.Ф. // Вестн. МГУ. Сер.3. Физика. Астрономия. 1976. № 5. C. 515.
  17. 17. Тюхтин А.В. // Журн. технической физики. 2005. Т. 75. № 8. C. 121.
  18. 18. Козлова Е.С., Котляр В.В. // Компьютерная оптика. 2013. Т. 37. № 2. C. 146.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library