- PII
- S3034590125070075-1
- DOI
- 10.7868/S3034590125070075
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 70 / Issue number 7
- Pages
- 683-688
- Abstract
- The results of cellular microstructures formation in dielectric iron-garnet films are presented. We used local surface modification (etching) by focused ion beam lithography. It is shown that using a scanning electron microscope along with an ion column is effective to compensate for the surface charge while etching in iron garnets. This method does not require an additional sputtering of conductive layer onto the garnet film. The etching depth must be more than half of the initial film thickness for implementation of a monodomain state inside the cells, At the same time, the size of the initial domain structure in the film must be taken into account when choosing the lateral cell sizes.
- Keywords
- феррит-гранат магнитооптические материалы ячеистые микроструктуры доменная структура фокусированный ионный пучок диэлектрик поверхностный заряд
- Date of publication
- 01.07.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 43
References
- 1. Flebus B., Grundler D., Rana B., et al. // J. Phys.: Cond. Matt. 2024. V. 36. № 36. P. 363501. https://doi.org/10.1088/1361-648X/ad399c
- 2. Petit D., Tacchi S., Albisetti E. // J. Phys. D: Appl. Phys. 2022. V. 55. № 29. P. 293003. https://doi.org/10.1088/1361-6463/ac6465
- 3. Kharratian S., Urey H., Onbash M.C. // Adv. Opt. Mater. 2020. V. 8. № 1. P. 1901381. https://doi.org/10.1002/adom.201901381
- 4. Logunov M.V., Safonov S.S., Fedorov A.S., et al. // Phys. Rev. Appl. 2021. V. 15. № 6. P. 064024. https://doi.org/10.1103/PhysRevApplied.15.064024
- 5. Aoshima K., Funabashi N., Higashida R. et al. // Opt. Express. 2023. V. 31. № 13. P. 21330. https://doi.org/10.1364/OE.489904
- 6. Blank T.G.H., Mashkovich E.A., Grishunin K.A. et al. // Phys. Rev. B. 2023. V. 108. № 9. P. 094439. https://doi.org/10.1103/PhysRevB.108.094439
- 7. Ignatyeva D.O., Karki D., Voronov A.A. et al. // Nature Commun. 2020. V. 11. № 1. P. 5487. https://doi.org/10.1038/s41467-020-19310-x
- 8. Kim S.K., Beach G.S.D., Lee K.-J. et al. // Nature Materials. 2022. V. 21. № 1. P. 24. https://doi.org/10.1038/s41563-021-01139-4
- 9. Kharratian S., Urey H., Onbagh M.C. // Sci. Rep. 2019. V. 9. № 1. P. 644. https://doi.org/10.1038/s41598-018-37317-9
- 10. Higashida R., Kawana M., Aoshima K., Funabashi N. // Proc. Optica Imaging Congr. 3D Image Acquisition and Display. Boston, 2023. N.Y.: Optica Publ. Group, 2023. P. JTu4A.47.
- 11. Лузанов В.А., Балашов В.В., Лопухин К.В. // РЭ. 2022. Т. 67. № 6. С. 612. https://doi.org/10.31857/S0033849422060158
- 12. Schiliz R., Helm T., Lammel M. et al. // Appl. Phys. Lett. 2019. V. 114. № 25. P. 252401. https://doi.org/10.1063/1.5090209
- 13. Yao N. Focused Ion Beam Systems: Basics and Applications. Cambridge: Univ. Press, 2007
- 14. Vernon-Parry K.D. // III–Vs Rev. 2000. V. 13. № 4. P. 40. https://doi.org/10.1016/S0961-1290 (00)80006-X
- 15. Фролов А.В., Синченко А.А., Орлов А.П. et al. // Нелинейный мир. 2017. Т. 15. № 2. С. 39.
- 16. Latyshev Y., Smolovich A., Orlov A. et al. // Nanosci. Nanoeng. 2015. V. 3. № 2. P. 13. https://doi.org/10.13189/nn.2015.030201
- 17. Мамонов Е.А., Новиков В.Б., Майдыковский А.И. et al. // ЖЭТФ. 2023. Т. 163. № 1. С. 41. https://doi.org/10.31857/S0044451023010054
- 18. Vansteenkiste A., Leliaert J., Dvornik M. u др. // AIP Advances. 2014. V. 4. № 10. P. 107133. https://doi.org/10.1063/1.4899186
- 19. Leliaert J., Dvornik M., Mulkers J. et al. // J. Phys. D: Appl. Phys. 2018. V. 51. № 12. P. 123002. https://doi.org/10.1088/1361-6463/aaab1c