RAS PhysicsРадиотехника и электроника Journal of Communications Technology and Electronics

  • ISSN (Print) 0033-8494
  • ISSN (Online) 3034-5901

STATISTICAL MODEL OF DIRECTIONAL FADING FOR LAND-MOBILE SATELLITE COMMUNICATION SYSTEMS. PART 1

PII
S3034590125070029-1
DOI
10.7868/S3034590125070029
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 7
Pages
635-643
Abstract
This study investigates a directional fading model for narrowbeam receiving antennas, typical of user terminals in modern satellite communication systems. Through analytical simplification, we derive an approximate version of the original model, where the power spectral density of the fading process is approximated by a Gaussian function. This approximation enables a computationally efficient synthesis method for the target application scenario. To validate the synthesized process, we compare its level-crossing statistics with theoretical predictions from a generalized reference model. Additionally, we propose a heuristic expression for a key model parameter controlling the angular spread of fading components. This expression is formulated in terms of physical parameters defining the radiation pattern of parabolic antennas, which are widely used in satellite terminals.
Keywords
замирания многолучевое распространение спектральная плотность мощности узконаправленная антенна спутниковые системы связи
Date of publication
01.07.2025
Year of publication
2025
Number of purchasers
0
Views
26

References

  1. 1. 3rd Generation Partnership Project (3GPP) Technical Report: TR38.811: Study on New Radio (NR) to Support Non-Terrestrial Networks, Version 15.4.0, 2020. Sophia Antipolis: 3GPP, 2020. 15 p. https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3234
  2. 2. ETSI Technical Report TR102768 V1.1.1: Digital Video Broadcasting (DVB); Guidelines for the use of EN301790 in Mobile Scenarios, 2009. Sophia Antipolis: Europ. Standards Telecommun. Inst., 2020. 111 p. https://www.etsi.org/deliver/etsi_tr/102700_102799/102768/01.01.01_60/tr_102768v010101p.pdf
  3. 3. Abdi A., Barger J.A., Kaveh M. // IEEE Trans. 2002. V. VT – 51. № 3. P. 425.
  4. 4. Cid E.L., Sanchez M.G., Alejos A.V. // IEEE Trans. 2016. V. VT – 65. № 4. P. 2787.
  5. 5. ITU Radio Regulatory Framework for Space Services. Geneva: Int. Telecommun. Union, 2015. 19 p. https://www.itu.int/en/ITU-R/space/snl/Documents/ITU-Space_reg.pdf
  6. 6. Stuber G.L. Principles of Mobile Communication. Cham: Springer, 2017
  7. 7. Baddour K.E., Beaulieu N. // IEEE Trans. 2005. V. WC – 4. № 4. P. 1650.
  8. 8. Шахтарин Б.И. Случайные процессы в радиотехнике. М.: Радио и связь, 2000.
  9. 9. Abdi A., Wills K., Barger H.A. et al. // Vehicular Technology Conf. Fall 2000. IEEE VTS Fall VTC2000. 52nd Vehicular Technology Conf. Boston. 24–28 Sept. N. Y.: IEEE, 2000. V. 4. P. 1850.
  10. 10. Corazza G.E., Vatalaro F. // IEEE Trans. 1994. V. VT – 43. № 3. P. 738.
  11. 11. Loo C. // IEEE Trans. 1985. V. VT – 34. № 3. P. 122.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library