RAS PhysicsРадиотехника и электроника Journal of Communications Technology and Electronics

  • ISSN (Print) 0033-8494
  • ISSN (Online) 3034-5901

On the causes of low critical current in twin film high-temperature superconductors

PII
S0033849425010085-1
DOI
10.31857/S0033849425010085
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 1
Pages
73-81
Abstract
The influence of internal local and external demagnetization fields on the critical current density of inter-doublet Josephson weak bonds Jc of high-temperature superconducting YBCO samples is investigated using the oscillation differential technique of local approximation. In the zero-field and zero-field cooling with flux accumulation regimes for samples with different Jc and twin sizes d, the demagnetization fields of samples HD1 and HD2 have been measured. The values of: d; thermodynamic first critical magnetic fields of twins Hic1; twin demagnetization fields HD tr; density of intra-twin effective critical currents Jc ef; critical pinning currents Jc p and shielding Meissner critical currents Jc M are determined. It is shown that at Hic1 fields the twins of large sizes “disintegrate” into a group of smaller twins with close demagnetizing factors. It is found that an increase in Jc M, Jc ef, and a decrease in d lead, on the one hand, to a decrease in Jc due to an increase in the demagnetization field of the sample HD and HD tr created by Jc ef and Jc M, and, on the other hand, to an increase in Jc ef and Jc M due to a decrease in d.
Keywords
высокотемпературные сверхпроводники двойники размагничивающие поля
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
20

References

  1. 1. Obradors X., Puig T., Ricart S. et al. // Supercond. Sci. Technol. 2024. V. 37. № 5. Article No. 053001.
  2. 2. Congreve J.V.J., Shi Y., Tutt N.C. et al. // Supercond. Sci. Technol. 2024. V. 37. № 6. Article No. 065019.
  3. 3. Yang Y., Deng G. // Supercond. Sci. Technol. 2024. V. 37. № 8. Article No. 085011.
  4. 4. Sueyoshi T., Enokihata R., Yamaguchi H. et al. // Supercond. Sci. Technol. 2024. V. 37. № 30. Article No. 3075010.
  5. 5. Soman A.A., Wimbush S.C., Long N.J. et al. // Supercond. Sci. Technol. 2024. V. 37. № 8. Article No. 085004.
  6. 6. Голубков М.В., Степанов В.А. // ФТТ. 2024 Т. 66. № 4. С. 532.
  7. 7. Ростами Х.Р. // Письма в ЖЭТФ. 2018. Т. 108. № 11. С. 734.
  8. 8. Ростами Х.Р. // ЖТФ. 2020. T. 90. № 12. C. 2066.
  9. 9. Bean C.P. // Rev. Mod. Phys. 1964. V. 36. № 1. Р. 31.
  10. 10. Тинкхам М. // Введение в сверхпроводимость. М.: Атомиздат, 1980.
  11. 11. Линтон Э. // Сверхпроводимость. М.: Мир, 1971.
  12. 12. Svistunov V.M., D’yachenko A.I. // Supercond. Sci.Technol.1992. V. 5. № 2. Р. 98.
  13. 13. Тarantini C., Yamamoto A., Jiang J. et al. // Supercond. Sci. Technol. 2016. V. 29. № 2. Article No.025004.
  14. 14. Елистратов А.А., Максимов И.Л. // ФТТ. 2000. Т. 42. № 2. С. 196.
  15. 15. Гохфельд Д.М. // ФТТ. 2014. Т. 56. № 12. С. 2298.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library