RAS PhysicsРадиотехника и электроника Journal of Communications Technology and Electronics

  • ISSN (Print) 0033-8494
  • ISSN (Online) 3034-5901

VORTEX ELECTROMAGNETIC WAVES: RADIATION, RECEIVING, PERSPECTIVES OF APPLICATION

PII
10.31857/S0033849425030011-1
DOI
10.31857/S0033849425030011
Publication type
Review
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 3
Pages
187-208
Abstract
A review of achievements in the field of research of electromagnetic waves with spiral phase front and their applications is presented. Known methods of radiation and receiving of such waves are considered, as well as their application to increase the efficiency of frequency spectrum use in radio communication systems due to simultaneous transmission of signals on several vortex modes with different angular indices, to improve the performance of radar systems with synthetic aperture by obtaining additional information, methods of reducing backscattering of radar objects. The ways of further research are discussed.
Keywords
вихревые моды моды с орбитальным угловым моментом радиосвязь радио­локация
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. Poynting J.H. // Proc. Royal Soc. London A. 1909. V. 82. № 557. P. 560. https://doi.org/10.1098/rspa.1909.0060
  2. 2. Allen L., Beijersbergen M.W., Spreeuw R.J. et al. // Phys. Rev. 1992. V. 45. № 11. P. 8185. https://doi.org/10.1103/PhysRevA.45.8185
  3. 3. Gecevicius M., Drevinskas R., Beresna M., Kazans­ky P. // Appl. Phys. Lett. 2014. V. 104. № 23. P. 231110. https://doi.org/10.1063/1.4882418
  4. 4. Бузов А.Л. // Изв. вузов. Радиоэлектроника. 1999. № 3. С. 75.
  5. 5. Бузов А.Л. // Радиотехника. 1999. № 7. С. 48.
  6. 6. Бузов А.Л. // Изв. вузов. Радиофизика. 1999. Т. 42. № 11. С. 1085.
  7. 7. Thidé B., Then H., Sjöholm J. et al. // Phys. Rev. Lett. 2007. V. 99. № 8. P. 087701. https://doi.org/10.1103/Phys. Rev. Lett. 99.087701
  8. 8. Tamburini F., Mari E., Sponselli A. et al. // New J. Physics. 2012. V. 14. № 3. P. 033001. https://doi.org/10.1088/1367-2630/14/3/033001
  9. 9. Yan Y., Xie G., Lavery M.P., Huang H. et al. // Nature Commun. 2014. V. 5. № 1. P. 4876. https://doi.org/10.1038/ncomms5876
  10. 10. Mahmouli F.E., Walker S.D. // IEEE Wireless Com­mun. Lett. 2013. V. 2. № 2. P. 223. https://doi.org/10.1109/WCL.2013.012513.120686
  11. 11. Isakov D., Wu Y., Allen B., Grant P.S. et al. // Royal Soc. Open Science. 2020. V. 7. № 7. Article No. 200493. https://doi.org/10.1098/rsos.200493
  12. 12. Cheng L., Hong W., Hao Z.C. // Scientific Reports. 2014. V. 4. № 1. Article No. 04814. https://doi.org/10.1038/srep04814
  13. 13. Schemmel P., Pisano G., Maffei B. // Optics Express. 2014. V. 22. № 12. P. 14712. https://doi.org/10.1364/OE.22.014712
  14. 14. Allen B., Pelham T., Wu Y. et al. // Royal Soc. Open Science. 2019. V. 6. № 12. Article No. 191419. https://doi.org/10.1098/rsos.191419
  15. 15. Алтынников А.Г., Платонов Р.А., Тумаркин А.В., Мед­ведева В.В. // Электроника и микроэлектроника СВЧ. 2019. Т. 1. С. 479.
  16. 16. Сосунов А.М., Алтынников А.Г., Платонов Р.А. и др. Устройство для одновременного формирования ЭМ волн с различными ненулевыми ОУМ на одной несущей частоте. Патент РФ № 2 784 530. Опубл. офиц. бюл. “Изобретения. Полезные модели” № 34 от 10.12.2022.
  17. 17. Byun W.J., Lee Y.S., Kim B.S. et al. // Electronics Lett. 2015. V. 51. № 19. P. 1480. https://doi.org/10.1049/el.2015.1833
  18. 18. Mari E., Spinello F., Oldoni M. et al. // IEEE Antennas and Wireless Propagation Lett. 2015. V. 14. P. 556. https://doi.org/10.1109/LAWP.2014.2369536
  19. 19. Qin F., Yi J., Cheng W. et al. // Proc. 12th European Conference on Antennas and Propagation (EuCAP 2018). London. 9–13 Apr. N.Y.: IEEE, 2018. Рaper No. 0685. https://doi.org/10.1049/cp.2018.0685
  20. 20. Byun W.J., Kim K.S., Kim B.S. et al. // Scientific Reports. 2016. V. 6. № 1. Article No. 27339. https://doi.org/10.1038/srep27339
  21. 21. Zhang W., Zheng S., Hui X. et al. // IEEE Antennas and Wireless Propaga-tion Lett. 2017. V. 16. P. 194. https://doi.org/10.1109/LAWP.2016.2569540
  22. 22. Bai Q., Tennant A., Allen B. // Electronics Lett. 2014. V. 50. № 20. P. 1414. https://doi.org/10.1049/el.2014.2860
  23. 23. Bi K., Xu J., Yang D. et al. // IEEE Photonics J. 2019. V. 11. № 2. Article No. 7901508. https://doi.org/10.1109/JPHOT.2019.2899236
  24. 24. Fang L., Yao H., Henderson R.M. // Proc. 2017 IEEE MTT-S Int.Microwave Symp. (IMS). Honololu. 04–09 Jun. N.Y.: IEEE, 2017. Р. 658. https://doi.org/10.1109/MWSYM.2017.8058655
  25. 25. Kang L., Li H., Zhou J. et al. // IEEE Trans. 2019. V. АР‑67. № 7. P. 4866. https://doi.org/10.1109/TAP.2019.2916595
  26. 26. Li H., Kang L., Dong K. // IEEE Access. 2020. V. 8. Article No. 211248. https://doi.org/10.1109/ACCESS.2020.3038568
  27. 27. Du Y.X., Liu H., Qin L., Li B.S. // IEEE Access. 2020. V. 8. Article No. 48599. https://doi.org/10.1109/ACCESS.2020.2979945
  28. 28. Liu Q., Chen Z.N., Liu Y. et al. // IEEE Trans. 2018. V. АР‑66. № 4. P. 1796. https://doi.org/10.1109/TAP.2018.2803757
  29. 29. Liu B., Cui Y., Li R. et al. // IEEE Antennas and Wireless Propagation Lett. 2017. V. 16. P. 744. https://doi.org/10.1109/LAWP.2016.2601615
  30. 30. Wang Y.Y., Du Y.X., Qin L., Li B.S. // IEEE Access. 2026. V. 6. Article No. 64603. https://doi.org/10.1109/ACCESS.2018.2877782
  31. 31. Zhang Y.M., Li J.L. // IEEE Antennas and Wireless Propagation Lett. 2019. V. 18. № 3. P. 417. https://doi.org/10.1109/LAWP.2019.2893035
  32. 32. Spinello F., Mari E., Oldoni M. et al. // arXiv preprint. 2015. https://doi.org/10.48550/arXiv.1507.06889
  33. 33. Liu K., Liu H., Qin Y. et al. // IEEE Trans. 2016. V. АР‑64. № 9. P. 3850. https://doi.org/10.1109/TAP.2016.2589960
  34. 34. Gong Y., Wang R., Deng Y. et al. // IEEE Trans. 2017. V. АР‑65. № 6. P. 2940. https://doi.org/10.1109/TAP.2017.2695526
  35. 35. Guo Z.G., Yang G.M. // IEEE Antennas and Wireless Propagation Lett. 2017. V. 16. P. 404. https://doi.org/10.1109/LAWP.2016.2581204
  36. 36. Qin F., Li L., Liu Y. et al. // IEEE Antennas and Wireless Propagation Lett. 2019. V. 18. № 9. P. 1941. https://doi.org/10.1109/LAWP.2019.2934524
  37. 37. Bai Q., Tennant A., Allen B., Rehman M.U. // Proc. 2013 Loughborough Antennas & Propagation Conf. (LAPC). Loughborough. 11–12 Nov. N.Y.: IEEE, 2013. Р. 410. https://doi.org/10.1109/LAPC.2013.6711931
  38. 38. Li H., Kang L., Wei F. et al. // IEEE Antennas and Wireless Propagation Lett. 2017. V. 16. P. 3022. https://doi.org/10.1109/LAWP.2017.2758520
  39. 39. Liu B., Lin G., Cui Y., Li R. // Scientific Reports. 2017. V. 7. № 1. Article No. 9852. https://doi.org/10.1038/s41598-017-10364-4
  40. 40. Deng C., Chen W., Zhang Z. et al. // Int. J. Antennas and Propagation. 2013. V. 2013. Article No. 847859. https://doi.org/10.1155/2013/847859
  41. 41. Bai X., Jin R., Liu L. et al. // Int. J. Antennas and Propagation. 2015. V. 2015. Article No. 132549. https://doi.org/10.1155/2015/132549
  42. 42. Bai X.D., Liang X.L., Sun Y.T. et al. // Scientific Reports. 2017. V. 7. № 1. Article No. 40099. https://doi.org/10.1038/srep40099
  43. 43. Wu J., Zhang Z., Ren X. et al. // IEEE Antennas and Wireless Propagation Lett. 2019. V. 18. № 7. P. 1482. https://doi.org/10.1109/LAWP.2019.2920695
  44. 44. Абдрахманова Г.И., Грахова Е.П., Ишмияров А.А. и др. // Тр. Конф. Проблемы техники и технологий телекоммуникаций ПТиТТ‑2020. Самара. 17–20 нояб. Самара: Поволжский гос. ун-т телекоммуникаций и информатики, 2020. С. 327.
  45. 45. Naseri H., PourMohammadi P., Melouki N. et al. // IEEE Antennas and Wireless Propagation Lett. 2023. V. 22. № 2. P. 402. https://doi.org/10.1109/LAWP.2022.3214123
  46. 46. Meng Z.K., Shi Y. // IEEE Trans. 2023. V. АР‑71. № 2. P. 1820. https://doi.org/10.1109/TAP.2022.3228773
  47. 47. Wu J., Fan M., Lu X. et al. // IEEE Antennas and Wireless Propagation Lett. 2024. V. 23. № 4. P. 1261. https://doi.org/10.1109/LAWP.2024.3351679
  48. 48. An C., Lei J., Li W. et al. // IEEE Trans. 2023. V. АР‑71. № 9. P. 7028. https://doi.org/10.1109/TAP.2023.3278842
  49. 49. Kou N., Yu S. // IEEE Antennas and Wireless Pro­pagation Lett. 2024. V. 23. № 4. P. 1211. https://doi.org/10.1109/LAWP.2024.3349562
  50. 50. Yu S., Kou N. // IEEE Trans. 2023. V. АР‑71. № 2. P. 1539. https://doi.org/10.1109/TAP.2022.3225587
  51. 51. Zhu D., Hu J., Lin B., Wu W. // IEEE Trans.2023. V. АР‑71. № 8. P. 6318. https://doi.org/10.1109/TAP.2023.3280748
  52. 52. Luo S., Hu J., Jiang T. et al. // IEEE Antennas and Wireless Propagation Lett. 2023. V. 22. № 9. P. 2120. https://doi.org/10.1109/LAWP.2023.3277921
  53. 53. Long L., Xiaoxiao Z. // Scientific Reports. 2018. V. 8. № 1. Article No. 5128. https://doi.org/10.1038/s41598-018-23415-1
  54. 54. Мелешин Ю.М. // Труды МАИ. 2024. № 135.
  55. 55. Pan Y., Zheng S., Zheng J. et al. // IEEE Antennas and Wireless Propagation Lett. 2017. V. 16. P. 385. https://doi.org/10.1109/LAWP.2016.2578958
  56. 56. Akram M.R., Gui L., Liu D. // Proc. 2016 Asia-Pa­ci­fic Int. Symp. on Electromagnetic Compatibility (APEMC). Shenzhen. 17–21 May. N.Y.: IEEE, 2016. Р. 591. https://doi.org/10.1109/APEMC.2016.7522806
  57. 57. Liang J., Zhang S. // IEEE Access. 2016. V. 4. Article No. 9570. https://doi.org/10.1109/ACCESS.2016.2636166
  58. 58. Jian R., Kwok Wa L. // Appl. Phys. Lett. 2018. V. 112. № .13. P. 131103. https://doi.org/10.1063/1.5021951
  59. 59. Nur A., Abd R., Shehab N. et al. // Micromachines. 2023. V. 14. № 4. P. 841. https://doi.org/10.3390/mi14040841
  60. 60. Hui X., Zheng S., Chen Y. // Scientific Reports. 2015. V. 15. Article No. 10148. https://doi.org/10.1038/srep10148
  61. 61. Zheng S., Hui X., Jin X. et al. // Proc. 2015 IEEE Int. Conf. on Computational Electromagnetics. Hong Kong. 02–05 Feb. N.Y.: IEEE, 2015. Р. 239. https://doi.org/10.1109/COMPEM.2015.7052619
  62. 62. Bai X., Liang X., Yao Y. et al. // Proc. 2016 IEEE Int. Symp. on Antennas and Propagation (APSURSI). Fajardo. 26 Jun. — 01 Jul. N.Y.: IEEE, 2016. Р. 1215. https://doi.org/10.1109/APS.2016.7696315
  63. 63. Shixing Y., Long L., Guangming S. et al. // Appl. Phys. Lett. 2016. V. 108. № 24. P. 241901. https://doi.org/10.1063/1.4953786
  64. 64. Ji C., Song J., Huang C. et al. // Optics Express. 2019. V. 27. № 1. P. 34. https://doi.org/10.1364/OE.27.000034
  65. 65. Xu B., Wu C., Wei Z. et al. // Optical Materials Express. 2016. V. 6. P. 3940. https://doi.org/10.1364/OME.6.003940
  66. 66. Chen M.L., Jiang L.J., Wei E.I. // IEEE Trans. 2017. V. АР‑65. № 1. P. 396. https://doi.org/10.1109/TAP.2016.2626722
  67. 67. Bai X., Kong F., Qian J. et al. // IEEE Antennas and Wireless Propagation Lett. 2019. V. 18. № 12. P. 2696. https://doi.org/10.1109/LAWP.2019.2949085
  68. 68. Guo K., Zheng Q., Yin Z., Guo Z. // IEEE Access. 2020. V. 8. Article No. 75523. https://doi.org/10.1109/ACCESS.2020.2988914
  69. 69. Huang H.F., Li S.N. // IEEE Antennas and Wireless Propagation Lett. 2019. V. 18. № 3. P. 432. https://doi.org/10.1109/LAWP.2019.2893321
  70. 70. Li N., Zheng S., Yang H. et al. // IEEE Trans. 2024. V. МТТ‑72. № 2. P. 1302. https://doi.org/10.1109/TMTT.2023.3300193
  71. 71. Yang H., Zheng S., Zhang H. et al. // IEEE Antennas and Wireless Propagation Lett. 2024. V. 23. № 3. P. 1124. https://doi.org/10.1109/LAWP.2023.3345935
  72. 72. Yang H., Zheng S., Zhang H. et al. // IEEE Trans. 2023. V. АР‑71. № 5. P. 4194. https://doi.org/10.1109/TAP.2023.3255539
  73. 73. Ishfaq M., Li X., Qi Z. et al. // IEEE Antennas and Wireless Propagation Lett.2023. V. 22. № 8. P. 2007. https://doi.org/10.1109/LAWP.2023.3271675
  74. 74. Jiang L., Yu S., Kou N. // IEEE Antennas and Wireless Propagation Lett. 2023. V. 22. № 11. P. 2654. https://doi.org/10.1109/LAWP.2023.3303222
  75. 75. Liao D., Ren X., Jing L. et al. // IEEE Trans. 2023. V. АР‑71. № 6. P. 4737. https://doi.org/10.1109/TAP.2023.3266509
  76. 76. Qin F., Zeng L., Liu S. et al. // IEEE Antennas and Wi­reless Propagation Lett. 2024. V. 23. № 1. P. 59. https://doi.org/10.1109/LAWP.2023.3317273
  77. 77. Yesilyurt U., Polat H.K. // IEEE Antennas and Wireless Propagation Lett. 2023. V. 22. № 5. P. 1139. https://doi.org/10.1109/LAWP.2023.3234591
  78. 78. Li Q., Wu C., Zhang Z. et al. // IEEE Trans. 2023. V. АР‑71. № 1. P. 774. https://doi.org/10.1109/TAP.2022.3217192
  79. 79. Bian C., Zhou D., Yang H. et al. // IEEE Trans. 2024. V. АР‑72. № 1. P. 1009. https://doi.org/10.1109/TAP.2023.3317142
  80. 80. Ali A., Khalily D., Serghioy D., Tafazoli R. // IEEE Access. 2023. V. 11. Article No. 12394. https://doi.org/10.1109/ACCESS.2023.3242647
  81. 81. Beccaria M., Dassano G., Pirinoli P. // IEEE Antennas and Wireless Propagation Lett. 2023. V. 22. № 5. P. 980. https://doi.org/10.1109/LAWP.2022.3229559
  82. 82. Ishfaq M., Li X., Qi Z. et al. // IEEE Antennas and Wireless Propagation Lett. 2024. V. 23. № 2. P. 688. https://doi.org/10.1109/LAWP.2023.3333234
  83. 83. Wang C., Yu H., Wu J. et al. // IEEE Trans. 2024. V. АР‑72. № 7. P. 5767. https://doi.org/10.1109/TAP.2024.3404849
  84. 84. He X., Deng L., Feng B. et al. // IEEE Trans. 2023. V. АР‑71. № 7. P. 5532. https://doi.org/10.1109/TAP.2023.3237157
  85. 85. Shen F., Mu J., Guo Z., Guo K. // IEEE Trans.2019. V. АР‑67. № 9. P. 5763. https://doi.org/10.1109/TAP.2019.2922545
  86. 86. Zhang Z., Xiao S., Li Y., Wang Z. // IEEE Antennas and Wireless Propagation Lett. 2017. V. 16. P. 521. https://doi.org/10.1109/LAWP.2016.2586975
  87. 87. Barbuto M., Trotta F., Bilotti F., Toscano A. // Progress In Electromagnetics Research. 2014. V. 148. P. 23. https://doi.org/10.2528/PIER14050204
  88. 88. Weiguo D., Yongzhong Z., Yang Y., Kaiwei Z. // IEICE Electronics Express. 2018. V. 15. № 12. Article No. 20180370. https://doi.org/10.1587/elex.15.20180370
  89. 89. Xu C., Zheng S., Zhang W. et al. // IEEE Microwave and Wireless Components Lett. 2016. V. 26. № 9. P. 738. https://doi.org/10.1109/LMWC.2016.2597262
  90. 90. Yang W.W., Dong X.Y., Sun W.J., Chen J.X. // IEEE Access. 2018. V. 6. Article No. 21212. https://doi.org/10.1109/access.2018.2826783
  91. 91. Gao S., Cheng W., Zhang W. et al. // arXiv pre­print. arXiv:1809.04845. 2018. https://doi.org/10.48550/arXiv.1809.04845
  92. 92. Cheng W., Zhang W., Jing H. et al. // IEEE Wireless Commun. 2018. V. 26. № 1. P. 100. https://doi.org/10.1109/MWC.2017.1700370
  93. 93. Yan Y., Xie G., Lavery M.P., Huang H. et al. // Nature Commun. 2014. V. 5. № 1. P. 4876. https://doi.org/10.1038/ncomms5876
  94. 94. Wang L., Jiang F., Yuan Z. et al. // IET Commun. 2018. V. 12. № 12. P. 1416. https://doi.org/10.1049/IET-COM.2017.1182
  95. 95. Ren Y., Li L., Xie G. et al. // IEEE Trans. 2017. V. WC‑16. № 5. P. 3151. https://doi.org/10.1109/TWC.2017.2675885
  96. 96. Yagi Y., Sasaki H., Yamada T. et al. // IEEE Antennas and Wireless Propagation Lett. 2021. V. 20. № 5. P. 833. https://doi.org/10.1109/LAWP.2021.3065098
  97. 97. Djordjevic I.B. // IEEE Access. 2017. V. 5. Article No. 16416. https://doi.org/10.1109/ACCESS.2017.2735994
  98. 98. Luo J., Wang S., Wang F. // IEEE Commun. Lett. 2019. V. 23. № 7. P. 1178. https://doi.org/10.1109/LCOMM.2019.2916056
  99. 99. Trichili A., Park K., Zghal M. et al. // IEEE Commun. Surveys & Tutorials. 2019. V. 21. № 4. P. 3175. https://doi.org/10.1109/COMST.2019.2915981
  100. 100. Jamin A., Mähönen P. // Wireless Commun. and Mo­bile Computing. 2005. V. 5. № 2. P. 123. https://doi.org/10.1002/wcm.201
  101. 101. Morgan K.S., Miller J.K., Cochenour B.M. et al. // J. Optics. 2016. V. 18. № 10. P. 104004. https://doi.org/10.1088/2040-8978/18/10/104004
  102. 102. Liu K., Cheng Y., Li X. et al. // IET Microwaves, An­ten­nas & Propagation. 2016. V. 10. № 9. P. 961. https://doi.org/10.1049/IET-MAP.2015.0842
  103. 103. Wang L., Tao L., Li Z. et al. // 2019 6th Asia-Pacific Con­ference on Synthetic Aperture Radar (APSAR). Xiamen. 26–29 Nov. N.Y.: IEEE, 2019. Paper No. 9048450. https://doi.org/10.1109/APSAR46974.2019.9048450
  104. 104. Bu X., Zhang Z., Chen L. et al. // IEEE Antennas and Wi­reless Propagation Lett. 2018. V. 17. № 5. P. 764. https://doi.org/10.1109/LAWP.2018.2814980
  105. 105. Zhang C., Yuan H., Zhang Q. et al. // IEEE Access. 2022. V. 10. Article No. 87630. https://doi.org/10.1109/ACCESS.2022.3199654
  106. 106. Liu K., Cheng Y., Gao Y. et al. // Appl. Phys. Lett. 2017. V. 110. № 16. Article No. 164102. https://doi.org/10.1063/1.4981253
  107. 107. Yuan T., Wang H., Qin Y. et al. // IEEE Antennas and Wireless Propagation Lett. 2016. V. 15. P. 1024. https://doi.org/10.1109/LAWP.2015.2490169
  108. 108. Luo Y., Chen Y., Zhu Y. et al. // IET Radar, Sonar & Navigation. 2020. V. 14. № 1. P. 2. https://doi.org/10.1049/IET-RSN.2019.0124
  109. 109. Yang T., Huang W., Lu X. //IEEE Access. 2020. V. 8. P. 221103. https://doi.org/10.1109/ACCESS.2020.3042529
  110. 110. Yuan T., Wang H., Cheng Y. et al. // Sensors. 2017. V. 17. № 3. P. 630. https://doi.org/10.3390/S17030630
  111. 111. Bu X.X., Zhang Z., Chen L.Y. et al. // IEEE Access. 2019. V. 7. Article No. 82693. https://doi.org/10.1109/ACCESS.2019.2908209
  112. 112. Semenikhin A.I., Semenikhina D.V. // 2023 Radiation and Scattering of Electromagnetic Waves (RSEMW). Divnomorskoe. 26–30 Jun. N.Y.: IEEE, 2023. P. 296. https://doi.org/10.1109/RSEMW58451.2023.10201940
  113. 113. Semenikhin A.I., Semenikhina D.V. // 2023 Radiation and Scattering of Electromagnetic Waves (RSEMW). Divnomorskoe. 26–30 Jun. N.Y.: IEEE, 2023. P. 300. https://doi.org/10.1109/RSEMW58451.2023.10202052
  114. 114. Semenikhin A.I., Semenikhina D.V., Yukhanov Y.V. // 2023 IEEE Radio and Antenna Days of the Indian Ocean (RADIO). Balaclava. 01–04 May. N.Y.: IEEE, 2023. Paper No. 10146073. https://doi.org/10.1109/RADIO58424.2023.10146073
  115. 115. Semenikhin A.I., Semenikhina D.V., Yukhanov Y.V. // 2023 Int Conf. on Electromagnetics in Advanced Applications (ICEAA). Venice. 09–13 Oct. N.Y.: IEEE, 2023. P. 19. https://doi.org/10.1109/ICEAA57318.2023.10297857
  116. 116. Семенихин А.И., Семенихина Д.В. // Журн. радио­электрон. 2024. № 5. http://jre.cplire.ru/jre/may24/10/text.pdf https://doi.org/10.30898/1684-1719.2024.5.10
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library