RAS PhysicsРадиотехника и электроника Journal of Communications Technology and Electronics

  • ISSN (Print) 0033-8494
  • ISSN (Online) 3034-5901

Perveance of cubic circuit containing Child-Langmuir diods in its edges

PII
10.31857/S0033849424120046-1
DOI
10.31857/S0033849424120046
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 12
Pages
1170-1174
Abstract
A non-linear electric circuit in a cube-like form is studied. Similar Child–Langmuir diodes are connected in its edges. The procedure of the circuit decomposition by the method of equivalent nodes is carried out. As a result, an exact formula of the general circuit purveyance was derived. The formula can be used to estimate volt-ampere characteristic (VAC) of tetragonal networks with cubic elementary cells containing Child–Langmuir diodes.
Keywords
диод Чайльда–Ленгмюра первеанс кубическая цепь
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
13

References

  1. 1. Child C. D. // Phys. Rev. Ser. I. 1911. V. 32. № 5. P. 492.
  2. 2. Langmuir I. // Phys. Rev. 1913. V. 2. № 6. P. 450.
  3. 3. Bull C. S. // J. Inst. Electr. Engineers, Pt III: Radio and Comm. Eng. 1948. V. 95. № 33. P. 17.
  4. 4. Kompfner R. // J. British Inst. Radio Engineers. 1947. V. 7. № 3. P. 117.
  5. 5. Liu L., Li L. M., Zhang X. P. et al. // IEEE Trans. 2007. V. PS-35. № 2. P. 361.
  6. 6. Дубинов А. Е., Михеев К. Е., Селемир В. Д., Судовцов А. В. // Изв. вузов. Физика. 1999. Т. 42. № 6. С. 67.
  7. 7. Clark J. J., Linke S. // IEEE Trans. 1971. V. ED-18. № 5. P. 322.
  8. 8. Wittmaack K. // Nucl. Instrum. Meth. 1974. V. 118. № 1. P. 99.
  9. 9. Degond P., Parzani C., Vignal V. H. // Math. Comput. Modelling. 2003. V. 38. № 10. P. 1093.
  10. 10. Weber B. V., Boller J. R., Colombant D. G. et al. // Laser and Part. Beams. 1987. V. 5. № 3. P. 537.
  11. 11. Abdallah N. B., Degond P., Mehats F. // Phys. Plasmas. 1998. V. 5. № 5. P. 1522.
  12. 12. Sheridan T. E., Goree J. A. // IEEE Trans. 1989. V. PS-17. № 6. P. 884.
  13. 13. Farouki R. T., Dalvie M., Pavarino L. F. // J. Appl. Phys. 1990. V. 68. № 12. P. 6106.
  14. 14. Sheridan T. E. // Phys. Plasmas. 1996. V. 3. № 9. P. 3507.
  15. 15. Benilov M. S. // Plasma Sources Sci. Technol. 2009. V. 18. № 1. P. 014005.
  16. 16. Lisovskiy V. A., Derevianko V. A., Yegorenkov V. D. // Vacuum. 2014. V. 103. № 1. P. 49.
  17. 17. Zhang P., Valfells A., Ang L. K. et al. // Appl. Phys. Rev. 2017. V. 4. № 1. P. 011304.
  18. 18. Tong C., Kozarsky E. S., Kim J. et al. // Mater. Sci. Semicond. Proc. 2018. V. 82. № 1. P. 92.
  19. 19. Chow K. K., Maddix H. S., Chorney P. // Appl. Phys. Lett. 1967. V. 10. № 9. P. 256.
  20. 20. Nath C., Kumar A. // J. Appl. Phys. 2012. V. 112. № 9. P. 093704.
  21. 21. Tan J. H., Anderson W. A. // Solar Energy Materials & Solar Cells. 2003. V. 77. № 3. P. 283.
  22. 22. Qasrawi A. F., Yaseen T. R., Eghbariy B., Gasanly N. M. // Acta Phys. Polonica A. 2012. V. 122. № 1. P. 152.
  23. 23. Guedes V. F., Nobrega K. Z., Ramos R. V. // IEEE Trans. 2022. V. ED-69. № 10. P. 5787.
  24. 24. Dubinov A. E., Kitayev I. N. // IEEE Trans. 2016. V. PS-44. № 10. P. 2376.
  25. 25. Дубинов А. Е. // Электричество. 2023. № 1. С. 57.
  26. 26. Narraway J. J. // Electr. Lett. 1994. V. 30. № 24. P. 2004.
  27. 27. Steenwijk van F. J. // Amer. J. Phys. 1998. V. 66. № 1. P. 90.
  28. 28. Beltrán R., Gómez F., Franco R. et al. // Lat. Am. J. Phys. Educ. 2013. V. 7. № 4. P. 621.
  29. 29. Perrier F., Girault F. // Results Phys. 2022. V. 36. № 1. P. 105443.
  30. 30. Yang Y. X., Low J. H. // IEE Proc.-Circuits Dev. Syst. 1997. V. 144. № 1. P. 51.
  31. 31. Pippenger N. // Math. Mag. 2010. V. 83. № 5. P. 331.
  32. 32. Xацет А. // Квант. 1972. № 2. С. 54.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library