RAS PhysicsРадиотехника и электроника Journal of Communications Technology and Electronics

  • ISSN (Print) 0033-8494
  • ISSN (Online) 3034-5901

Electrodynamic models magnetized graphene diffraction gratings, based on the solution of integral equations for plasmonic anisotropic structures

PII
10.31857/S0033849424110027-1
DOI
10.31857/S0033849424110027
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 11
Pages
1053-1059
Abstract
Two methods have been used to solve the boundary value problem of diffraction of a plane electromagnetic wave on a diffraction grating of graphene strips in the presence of a magnetic field. In solving the obtained integral and paired adder equations, the Galerkin method was used with a basis in the form of Legendre and Hegenbauer polynomials. As a result, systems of linear algebraic equations with fast internal convergence were obtained. All matrix elements of the system are expressed explicitly.
Keywords
дифракционная решетка графен магнитное поле интегральные уравнения метод Галеркина плазмонный резонанс
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
13

References

  1. 1. Tamagnone M., Slipchenko T. M., Moldovam C. et al. // Phys. Rev. B. 2018. V. 97. № 24. P. 241410.
  2. 2. Chin M. L., Matschy S., Stawitzki F. et al. // J. Phys. Photonics. 2021. V.3. № 1. P. 01LT01.
  3. 3. Kuzmin D. A., Bychkov I. V., Shavrov V. G. et al. // Nanophotonics. 2018. V. 7. № 3. P. 597. https://doi.org/10.1515/nanoph-2017–0095
  4. 4. Ningning Wang, Linhui Ding, Weihua Wang // Phys. Rev. B. 2023. V. 108. № 8. P. 085406.
  5. 5. Zesen Zhou, Zhilong Gan, Lei Cao // J. Phys. D: Appl. Phys. 2023. V. 56. P. 365104. https:// doi: 10.1088/1361–6463/acda45
  6. 6. Liu Jian-Qiang, Zhou Yu-Xiu, Li Li, Wang Pan, Zayats A. V. // Opt. Express. 2015. V. 23. № . 10. P. 12525. https:// doi:10.1364/OE.23.012524
  7. 7. Lu Yafeng, Wang Chen, Zhao Shiqiang, Wen Yongzheng. // Frontiers Phys. 2021. V. 8. № 622839. https://doi: 10.3389/fphy.2020.622839
  8. 8. Padmanabhan P., Boubanga-Tombet S., Fukidome H. et al. //Appl. Phys. Lett. 2020. V. 116. № 22. P. 221107. https://doi.org/10.1063/5.0006448
  9. 9. Guo T., Argyropoulos C. J. // Appl. Phys. 2023. V.134. № 5. P. 050901. https://doi.org/10.1063/5.0152664
  10. 10. Лерер А. М., Макеева Г. С., Черепанов В. В. // PЭ. 2021. T. 66. № 6. C. 543.
  11. 11. Лерер А. М., Иванова И. Н., Макеева Г. С., Черепанов В. В. // Оптика и спектроскопия. 2021. Т. 129. № 3. С. 342.
  12. 12. Лерер A. M. // PЭ. 2012. T. 57. № 11. C. 1160.
  13. 13. Wang W. H., Apel S. P., Kinaret J. M.// Phys. Rev. B. 2012. V. 86. № 12. P. 125450.
  14. 14. Hanson G. W. // J. Appl. Phys. 2008. V. 103. № 6. P. 064302.
  15. 15. Градштейн И. С., Рыжик И. М. Таблицы интегралов, сумм, рядов и произведений. М.: Физматлит, 1963.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library