- PII
- 10.31857/S0033849424100085-1
- DOI
- 10.31857/S0033849424100085
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 69 / Issue number 10
- Pages
- 989-995
- Abstract
- The first-principle modeling of two different quasi-two-dimensional phases based on the volume phases Cr2Te3 and CrTe3 is carried out. Structural relaxation of the obtained 2D compounds and their volumetric prototypes was performed within the framework of the density functional method and the projection plane wave method. Magnetic anisotropy in various crystallographic planes of quasi-two-dimensional structures and corresponding bulk materials has been studied. An increase in magnetic anisotropy was found during the transition from bulk phases to quasi-two-dimensional phases of Cr2Te3/CrTe3. A charge density map is constructed and the density of electronic states is found for 2D Cr2Te3 and CrTe3 materials.
- Keywords
- 2D-магнетик теория функционала плотности магнитная анизотропия плотность электронных состояний
- Date of publication
- 16.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 11
References
- 1. Zhang P., Xue S., Wang J. // Materials & Design. 2020. V. 192. P. 108726. https://doi.org/10.1016/j.matdes.2020.108726
- 2. Zhang Z., Wang Z., Shi T. et al. // InfoMat. 2020. V. 2. №. 2. P. 261. https://doi.org/10.1002/inf2.12077
- 3. Frazier A.B., Warrington R.O., Friedrich C. et al. // IEEE Trans. 1995. V. ID-42. № 5. P. 423. https://doi.org/10.1109/41.464603
- 4. Charles Jr H. K. // Johns Hopkins APL Technical Digest. 2005. V. 26. №. 4. P. 402.
- 5. Rohrer H.R. // Jap. J. Appl. Phys. 1993. V. 32. № 3. P. 1335.
- 6. Keyes R.W. // IBM J. Research and Development. 1988. V. 32. № 1. P. 84.
- 7. Гуляев Ю.В., Сандомирский В.Б., Суханов А.А., Ткач Ю.Я. // Успехи физ. наук. 1984. Т. 144. № 3. С. 475.
- 8. Gong C., Zhang X. // Science. 2019. V. 363. № 6428. P. 4450. https://www.science.org/doi/10.1126/science.aav4450
- 9. Kartsev A., Malkovsky S., Chibisov A. // Nanomaterials. 2021. V. 11. № 11. P. 2967. https://doi.org/10.3390/nano11112967Б
- 10. Билык В.Р., Брехов К.А., Агранат М.Б., Мишина Е.Д. // Russ. Technol. J. 2023. Т. 11. № 3. С. 38. https://doi.org/10.32362/2500-316X-2023-11-3-38-4
- 11. Negedu S. D., Kartsev A.I., Palit M. et al. // J. Phys. Chem. C. 2022. V. 126. № 30. P. 12545. https://doi.org/10.1021/acs.jpcc.2c02102
- 12. Xiong Z., Hu C., Luo X. // Nano Lett. 2021. V. 21. № 24. P. 10486.
- 13. Li R., Nie J.-H., Xianet J.-J. et al. // ACS Nano. 2022. V. 16. № 3. P. 4348.
- 14. Yao J., Wang H., Yuan B. et al. // Adv. Mater. 2022. V. 34. № 23. P. 2200236.
- 15. Medvedev M.G., Bushmarinov I.S., Sun J. et al. // Science. 2017. V. 355. № 6320. P. 49. https://www.science.org/doi/10.1126/science.aah5975
- 16. Hafner J. // J. Computational Chem. 2008. V. 29. № 13. P. 2044. https://doi.org/10.1002/jcc.21057
- 17. Perdew J.P., Ernzerhof M., Burke K. // J. Chem. Phys. 1996. V. 105. № 22. P. 9982.
- 18. Kartsev A. A., Augustin M., Evans R.F.L. et al. // npj Computational Mater. 2020. V. 6. № 1. P. 150. https://www.nature.com/articles/s41524-020-00416-1
- 19. Momma K, Izumi F. // J. Appl. Crystallography. 2008. V. 41. № 3. P. 653. https://doi.org/10.1107/S0021889808012016
- 20. Synnatschke K., Badlyan N., Wrzesińska A. et al. // Ultrasonics Sonochemistry. 2023. V. 98. P. 106528.
- 21. Pramanik T., Anupam R., Rik D. et al. // J. Magn. Magn. Mater. 2017. V. 437. P. 72.
- 22. Bian M., Kamenskii N., Han M. et al. // Mater. Research Lett. 2021. V. 9. № 5. P. 205.
- 23. Debbichi M., Debbichi L., Lebègue S. // Phys. Lett. A. 2020. V. 384. № 27. P. 126684.