RAS PhysicsРадиотехника и электроника Journal of Communications Technology and Electronics

  • ISSN (Print) 0033-8494
  • ISSN (Online) 3034-5901

Metamaterial-inspired slow-wave structures for w-band traveling-wave tubes

PII
10.31857/S0033849424100077-1
DOI
10.31857/S0033849424100077
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 10
Pages
982-988
Abstract
Electromagnetic parameters of the ladder-type slow-wave structures (SWS) formed by a metal plate with periodically arranged slots of a certain shape placed in a waveguide are studied. Modifications of the ladder-type SWS associated with the complication of the slot shape or the waveguide shape are proposed in such a way that the frequency of the slot resonance is lower than the cutoff frequency of the waveguide, and the SWS exhibits the properties of a double-negative metamaterial. It is shown that the fundamental spatial harmonic is backward, while the +1st harmonic acquires normal dispersion and the beam-wave synchronism is possible in a sufficiently wide frequency band. SWS with dumbbell-shaped slots and SWS in a groove-loaded waveguide are designed for W-band traveling-wave tube (75…110 GHz) with a relative bandwidth of about 25% and operating voltages of 8…13 kV. In such structures, there is the possibility of interaction of a slow wave with two sheet electron beams propagating from above and below the plate.
Keywords
замедляющая система метаматериал лампа бегущей волны миллиметровый диапазон
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
11

References

  1. 1. Paoloni C. // IEEE Commun. Magaz. 2021. V. 59. № 5. P. 102. doi: 10.1109/MCOM.001.2000326
  2. 2. Григорьев А.Д. Терагерцевая электроника. М.: Физматлит, 2020.
  3. 3. Альтшулер Ю.Г., Татаренко А.С. Лампы малой мощности с обратной волной. М.: Сов. радио, 1963.
  4. 4. Гершензон Е.М., Голант М.Б., Негирев А.А., Савельев К.С. Лампы обратной волны миллиметрового и субмиллиметрового диапазонов волн / Под ред. Н.Д. Девяткова. М.: Радио и связь, 1985.
  5. 5. Duan Z., Shapiro M.A., Schamiloglu E. et al. // IEEE Trans. 2019. V. ED-66. № 1. P. 207. doi: 10.1109/TED.2018.2878242
  6. 6. Hummelt J.S., Lewis S.M., Shapiro M.A., Temkin R.J. // IEEE Trans. 2014. V. PS-42. № 4. P. 930. doi: 10.1109/TPS.2014.2309597
  7. 7. Hummelt J. S., Lu X., Xu H. et al. // Phys. Rev. Lett. 2016. V. 117. № 23. P. 237701. doi: 10.1103/PhysRevLett.117.237701
  8. 8. Lu X., Stephens J.C., Mastovsky I. et al. // Phys. Plasmas. 2018. V. 25. № 2. P. 023102. doi: 10.1063/1.5016545
  9. 9. High Power Microwave Sources and Technologies Using Metamaterials / Ed. J.W. Luginsland et al. N.Y.: Wiley-IEEE Press, 2021.
  10. 10. Jiang S., Tang X., Huang S. et al. // IEEE Trans. 2023. V. ED-70. № 3. P. 1306. doi: 10.1109/TED.2022.3233814
  11. 11. Karp A. // Proc. IRE. 1957. V. 45. № 4. P. 496. doi: 10.1109/JRPROC.1957.278439
  12. 12. Berry D., Deng H., Dobbs R. et al. // IEEE Trans. 2014. V. ED-61. № 6. P. 1830. doi: 10.1109/TED.2014.2302741
  13. 13. Вендик И.Б., Вендик О.Г. // ЖТФ. 2013. Т. 83. № 1. С. 3.
  14. 14. Yurt S.C., Elfrgani A., Fuks M.I. et al. // IEEE Trans. 2016. V. PS-44. № 8. P. 1280. doi: 10.1109/TPS.2016.2535305
  15. 15. Catalan-Izquierdo S., Bueno-Barrachina J.-M., Cañas-Peñuelas C.-S., Cavallé-Sesé F. // Renew. Energies & Power Quality J. 2009. V. 1. № 7. P. 613. doi: 10.24084/repqj07.451
  16. 16. Butcher P.N. // Proc. IEE. 1957. V. 104. Pt. B. № 14. P. 169. doi: 10.1049/pi-b-1.1957.0132
  17. 17. Starodubov A.V., Galushka V.V., Ryskin N.M. et. al. // Proc. 2023 24th Int. Vacuum Electronics Conf. (IVEC). Chengdu 25-28 Apr. N.Y.: IEEE, 2023. Paper No. 10157320. doi: 10.1109/IVEC56627.2023.10157320
  18. 18. Торгашов Р.А., Ножкин Д.А., Стародубов А.В., Рыскин Н.М. // РЭ. 2023. Т. 68. № 10. С. 992. doi: 10.31857/S0033849423100182
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library