RAS PhysicsРадиотехника и электроника Journal of Communications Technology and Electronics

  • ISSN (Print) 0033-8494
  • ISSN (Online) 3034-5901

Optimization of the waveguide structure of a plasma reactor supported by powerful microwave radiation of a gyrotron at a frequency of 24 GHz

PII
10.31857/S0033849424090033-1
DOI
10.31857/S0033849424090033
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 9
Pages
849-854
Abstract
Numerical simulation of electromagnetic fields in a waveguide plasma torch has been carried out, in which microwave plasma heating is carried out by continuous radiation from a technological gyrotron with a frequency of 24 GHz and a power of up to 5 kW. It is shown that a decrease in the output diameter of the plasma torch makes it possible to more than double the amplitude of the electric field, but when the diameter decreases to 8 mm, the reflection coefficient increases significantly, which leads to reflected radiation entering the gyrotron. It is shown that taking into account the collision frequency corresponding to the real parameters of the atmospheric pressure discharge leads to a decrease in the reflection coefficient by more than 10. It has been experimentally confirmed that with a decrease in the output diameter of the plasma torch, the range of discharge maintenance parameters significantly expands, and the absorption coefficient exceeds 80%.
Keywords
СВЧ плазмотрон численное моделирование разряд атмосферного давления
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
8

References

  1. 1. Sabchevski S., Glyavin, M., Mitsudo S. et al. // J. Infrared, Millimeter, Terahertz Waves. 2021. V. 42. P. 715. https://doi.org/10.1007/s10762-021-00804-8
  2. 2. Egorov S.V., Eremeev A.G., Kholoptsev V.V. et al. // Rev. Sci. Instruments. 2022. V. 93. № 6. https://doi.org/10.1063/5.0093341
  3. 3. Bogdashov A.A., Fokin A.P., Glyavin M.Yu. et al. // J. Infrared, Millimeter, Terahertz Waves. 2020. V. 41. P. 164. https://doi.org/10.1007/s10762-019-00655-4
  4. 4. Мансфельд Д.А., Водопьянов А.В., Синцов С.В. и др. // Письма в ЖТФ. 2023. Т. 49. № 1. C. 39. https://doi.org/ 10.21883/PJTF.2023.01.54057.19384
  5. 5. Мансфельд Д.А. // Тез. докл. конф. “Физика низкотемпературной плазмы”. Казань, 5–9.06.2023. Казань: Изд-во Казан. ун-та, 2023. С. 56.
  6. 6. Raizer Yu.P. Gas Discharge Physics. New York: Springer, 1991.
  7. 7. Yukikazu Itikawa // J. Phys. Chem. Ref. Data. 2002. V. 31. P. 749. https://doi.org/10.1063/1.1481879
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library