RAS PhysicsРадиотехника и электроника Journal of Communications Technology and Electronics

  • ISSN (Print) 0033-8494
  • ISSN (Online) 3034-5901

Analysis of the phase structure of a signal with linear frequency modulation when processed in high-resolution radars

PII
10.31857/S0033849424080026-1
DOI
10.31857/S0033849424080026
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 8
Pages
714-726
Abstract
The main stages of receiving and processing a linear frequency modulation (LFM) signal reflected from a point moving target are considered. When calculating the phase components of the received LFM signal, the principle of time scale transformation is used, which manifests itself in the mutual movement of the target and the radar station (radar) with pulsed radiation. At all stages of processing the LFM signal, including frequency transfer, quadrature demodulation (selection of the complex envelope of the signal) and matched filtering, the amplitude and phase functions of the signal are determined, allowing coherent processing of a batch of radio pulses. The analysis of the phase structure of the LFM signal is carried out, as a result of which the main phase components are determined, which are taken into account during interperiod signal processing in high-resolution radar.
Keywords
сигнал с линейной частотной модуляцией трансформация масштаба времени квадратурная демодуляция сигнала согласованная фильтрация сигнала
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Ярлыков М.С. // РЭ. 1971. Т. 16. № 1. С. 92.
  2. 2. Ярлыков М.С. Применение марковской теории нелинейной фильтрации в радиотехнике. М.: Сов. радио, 1980.
  3. 3. Ширман Я.Д. Разрешение и сжатие сигналов. М.: Сов. радио, 1974.
  4. 4. Кук Ч., Бернфельд М. Радиолокационные сигналы / Пер. с англ. под ред. В.С. Кельзона. М.: Сов. радио, 1971.
  5. 5. Richards M.A. Fundamentals of Radar Signal Processing. New York: McGraw Hill, 2013.
  6. 6. Principles of Modern Radar. Basic Principles/Eds. by M. A. Richards, J. A. Scheer, W.A. Holm. Raleigh: SciTech Publishing Inc., 2010.
  7. 7. Yang R., Li H., Li Sh. et.al. High-Resolution Microwave Imaging. Beijing: National Defense Industry Press and Singapore: Springer Nature Ltd, 2018.
  8. 8. Mahafza B.R., Atef Z. Elsherbeni A.Z. MATLAB Simulation for Radar Systems Design. Boca Raton: Chapman & Hall/CRC, 2004.
  9. 9. Chen B., Wu J. Synthetic Impulse and Aperture Radar (SIAR). Novel Multi-Frequency MIMO Radar. Beijing: National Defense Industry Press and Singapore: John Wiley & Sons, 2014.
  10. 10. Gini F., De Maio A., Patton L. Waveform Design and Diversity for Advanced Radar Systems. L.: Institution of Engineering and Technology, 2012.
  11. 11. Levanon N., Mozeson E. Radar Signals. Hoboken John Wiley & Sons, 2004.
  12. 12. Ширман Я.Д., Голиков В.Н., Бусыгин И.Н. и др. Теоретические основы радиолокации. М.: Сов. радио, 1970.
  13. 13. Финкельштейн М.И. Основы радиолокации. М.: Радио и связь, 1983.
  14. 14. Кондратенков Г.С., Фролов А.Ю. Радиовидение. Радиолокационные системы дистанционного зондирования Земли. Учеб. пособие для вузов / Под ред. Г.С. Кондратенкова. М.: Радиотехника, 2005.
  15. 15. Cumming I. G., Wong F. H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation. Boston: Artech House, 2005.
  16. 16. Гаврилов К.Ю., Каменский И.В., Кирдяшкин В.В., Линников О.Н. Моделирование и обработка радиолокационных сигналов в Matlab (Учеб. пособие). М.: Радиотехника, 2020.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library