RAS PhysicsРадиотехника и электроника Journal of Communications Technology and Electronics

  • ISSN (Print) 0033-8494
  • ISSN (Online) 3034-5901

The effect of germanium wetting layer on the percolation processes in ultrathin copper films and their microwave transmission, reflection and absorption coefficients

PII
10.31857/S0033849424050074-1
DOI
10.31857/S0033849424050074
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 5
Pages
448-454
Abstract
The microwave coefficients of copper films with a thickness of 1...16 nm grown on a 1.8 nm germanium sublayer deposited on the surface of quartz glass substrates with a thickness of 4 mm are studied. The measurements have been carried out in a rectangular waveguide with a cross section of 23×10 mm2 in the frequency range of 8.5...12.5 GHz. A smooth change in the microwave coefficients of the samples studied is detected in the range of copper film thicknesses of 2...16 nm. It is established that the critical percolation thickness of the copper films grown on germanium sublayer is in the range between 1 and 2 nm. A significant internal size effect is found in the films grown on Ge sublayer due to the scattering of conduction electrons mainly by intercrystalline boundaries. It is determined that the coefficient of reflection of conduction electrons by the intercrystalline boundaries of the copper films with Ge sublayer is more than three times higher than a similar coefficient in Cu films grown directly on the glass substrates.
Keywords
ультратонкие медные пленки перколяция СВЧ коэффициенты прохождения отражения и поглощения классический размерный эффект германиевый подслой границы двойников
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Каплан А. Е. // РЭ. 1964. Т. 9. № 10. С. 1781.
  2. 2. Kaplan A. E. // J. Optical Soc.Am. B. 2018. V. 35. № 6. P. 1328. DOI: 10.1364/JOSAB.35.001328
  3. 3. Khorin I., Orlikovsky N., Rogozhin A. et al. // Proc. SPIE. 2016. V. 10224. Р. 1022407–1. DOI: 10.1117/12.2266504
  4. 4. Fuchs K. // Mathematical Proc. Cambridge Philosophical Soc. 1938. V. 34. № 1. P. 100. DOI: 10.1017/S0305004100019952
  5. 5. Dingle R. B. // Proc. Royal Soc. A. 1950. V. 201. № 1067. P. 545. DOI: 10.1098/rspa.1950.0077
  6. 6. Sondheimer E. H. // Adv. Phys. 1952. V. 1. № 1. P. 1. DOI: 10.1080/00018735200101151
  7. 7. Mayadas A. F., Shatzkes M., Janak J. F. // Appl. Phys. Lett. 1969. V. 14. № 11. P. 345. DOI: 10.1063/1.1652680
  8. 8. Mayadas A. F., Shatzkes M. // Phys. Rev. B. 1970. V. 1. № 4. P. 1382. DOI: 10.1103/PhysRevB.1.1382
  9. 9. Camacho J. M., Oliva A. I. // Thin Solid Films. 2006. V. 515. P. 1881. DOI: 10.1016/j.tsf.2006.07.024
  10. 10. Андреев В. Г., Вдовин В. А., Глазунов П. С. и др. // Оптика и спектроскопия. 2022. Т. 130. № 9. С. 1410. DOI: 10.21883/OS.2022.09.53304.3539–22
  11. 11. Barmak K., Darbal A., Ganesh K. J. et al. // J. Vacuum Sci. Technol. A. 2014. V. 32. № 6. P. 061503–1. DOI: 10.1116/1.4894453
  12. 12. Вдовин В. А., Андреев В. Г., Глазунов П. С. и др. // Оптика и спектроскопия. 2019. Т. 127. № 5. С. 834. DOI: 10.21883/OS.2019.11.48524.132–19
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library