RAS PhysicsРадиотехника и электроника Journal of Communications Technology and Electronics

  • ISSN (Print) 0033-8494
  • ISSN (Online) 3034-5901

Optical Antenna with Controlled Radiation Pattern for Application in Atmospheric Communication Channels

PII
10.31857/S0033849423110086-1
DOI
10.31857/S0033849423110086
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 11
Pages
1122-1130
Abstract
A mathematical model of a new optical (1550 nm) antenna with an electrically controlled radiation pattern is presented. The working principle is considered, and the main parameters are calculated. As distinct from existing solutions, the antenna does not require convergence of beams at a distance of one half of wavelength. In the framework of the model, an electro-optical switch based on lithium niobate is calculated. Such antenna elements as a phase shifter and deflector are presented and calculated
Keywords
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Vytovtov K., Barabanova E., Igumnov M. // J. Phys.: Conf. Ser. 2019. V. 1368. № 2. P. 022038.
  2. 2. Salameh A.I., Tarhuni M.E. // Future Internet. 2022. V. 14. № 4. P. 117.
  3. 3. Khiadani N. // Majlesi J. Electrical Engineering. 2021. V. 10. № 2. P. 87.
  4. 4. Ikram M., Sultan K., Lateef M.F., Alqadami A.S.M. // Electronics. 2022. V. 11. № 1. P. 169.
  5. 5. Kiniasih S.D. Fiber-Optic Communication Systems. 3rd ed. N.Y.: John Wiley & Sons, Inc. 2002.
  6. 6. Blaunstein N., Engelberg S., Krouk E., Sergeev M. Fiber Optic and Atmospheric Optical Communication. N.Y.: Wiley; IEEE Press, 2019. Chapter 11.
  7. 7. Xiaoming Zhu X., Kahn J.M. // IEEE Trans. 2002. V. COM-50. № 8. P. 1293.
  8. 8. DeRose C.T., Kekatpure R.D., Trotter D.C. et al. // Optics Express. 2013. V. 21. № 4. P. 5198.
  9. 9. Kedar D., Arnon S. // IEEE Commun. Magaz. 2004. V. 42. № 5. P. s2.
  10. 10. Zou Y., Ke Z., Shao Y. et al. // Appl. Optics. 2022. V. 61. № 3. P. 721.
  11. 11. Huang L., Wang P., Liu Z. et al. // Appl. Optics. 2019. V. 58. № 9. P. 2226.
  12. 12. Dong B., Jia J., Li G. et al. // Optics Express. 2022. V. 30. № 22. P. 40936.
  13. 13. Kaplan G., Aydin K., Scheuer J. // Optical Mater. Express. 2015. V. 5. № 11. P. 2513.
  14. 14. Jameel A., Mazher W., Ucan O.N. // Proc. 2nd Int. Multi-Disciplinary Conf. “Integrated Sciences and Technologies”. 7–9 Sept. 2019, Sakarya. Gent: EAI, 2019. P. 447.
  15. 15. Da Silva V.L., Liu Y., Antos A.J. et al. // Proc. Conf. Optical Fiber Commun. 25 Feb.–01 Mar. 1996. San Jose. N.Y.: IEEE, 1996. P. 202.
  16. 16. Заказнов Н.П., Кирюшин С.И., Кузичев В.И. Теория оптических систем. М.: 1992. С. 53.
  17. 17. Karri P., Puri A., Tang J. // IEEE Trans. 1996. V. Mag-32. № 5. P. 4099. https://doi.org/10.1109/20.539311
  18. 18. Ojha J.J., Simmons J.G., Vetter A.S. et al. // Proc. Conf. LEOS’93. San Jose. 15–18 Nov. N.Y.: IEEE, 1993. P. 500. https://doi.org/10.1109/LEOS.1993.379280
  19. 19. Riza N.A. // J. Lightwave Technol. 2008. V. 26. № 15. P. 2500. https://doi.org/10.1109/JLT.2008.927204
  20. 20. Barabanova E.A., Vytovtov K.A., Nguyen T.T. // J. Phys.: Conf. Ser. 2019. V. 1368. № 2. P. 389.
  21. 21. Dadoenkova Y.S., Lyubchanskii I.L., Lee Y., Rasing T. // IEEE Trans. 2011. V. 47. № 6. P. 1623.
  22. 22. Vytovtov K., Barabanova E., Zouhdi S. // Appl. Phys. A. 2018. V. 124. № 2. P. 1. https://doi.org/10.1007/s00339-018-1563-z
  23. 23. Born M.E., Wolf E. Principles of Optics. Cambridge: Univ. Press, 2000.
  24. 24. Bытoвтoв K.A. // PЭ. 2004. T. 49. № 5. C. 559.
  25. 25. Гоноровский И.С. Радиотехнические цепи и сигналы. М.: Сов. радио, 1977. С. 31.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library