RAS PhysicsРадиотехника и электроника Journal of Communications Technology and Electronics

  • ISSN (Print) 0033-8494
  • ISSN (Online) 3034-5901

Analysis of radiative absorption of acoustic Lamb waves in plates loaded with an inviscid non-conducting fluid.

PII
10.31857/S0033849423100029-1
DOI
10.31857/S0033849423100029
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 10
Pages
1030-1034
Abstract
The dependence of radiation losses into a liquid on the value of the displacement component U_3 normal to the plate on the surface of a piezoelectric plate was experimentally studied for Lamb waves of various orders. Waves whose phase velocity V_n in the plate are considered greater than the velocity of the longitudinal volumetric acoustic wave in the liquid V_l. It is shown that at small values of U3 there is no radiation into the liquid and the magnitude of radiation losses is close to zero even at V_n > V_l; at large values of U_3, the magnitude of radiation losses is large and for Lamb waves in the YZ-LiNbO3 plate with a thickness normalized to the wavelength of 1.75 and frequency 16.97 MHz it reaches a value of 4 dB/mm, comparable to the radiative losses of surface acoustic waves in the same material.
Keywords
radiation losses surface acoustic waves longitudinal volumetric acoustic wave liquid
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. Фрайден Дж. Мир электроники. Современные датчики. Справочник. М.: Техносфера, 2006.
  2. 2. Викторов И.А. Физические основы применения ультразвуковых волн Рэлея и Лэмба в технике. М.: Наука, 1966.
  3. 3. Kuznetsova I.E., Zaitsev B.D., Borodina I.A. et al. // Ultrasonics. 2004. V. 42. № 1–9. P. 179. https://doi.org/10.1016/j.ultras.2004.01.006
  4. 4. Smirnov A., Anisimkin V., Voronova N. et al. // Sensors. 2022. V. 22. № 19. P. 7231. https://doi.org/10.3390/s22197231
  5. 5. Caliendo C. // Sensors. 2015. V. 15. № 6. P. 12841. https://doi.org/10.3390/s150612841
  6. 6. Terakawa Y., Kondoh J. // Jpn. J. Appl. Phys. 2020. V. 59. SKKC08. https://doi.org/10.35848/1347-4065/ab84ae
  7. 7. White R.M., Wicher P.J., Wenzel S.W., Zellers E.T. // IEEE Trans. 1987. V. UFFC-34. № 2. P. 162. https://doi.org/10.1109/T-UFFC.1987.26928
  8. 8. Kuznetsova I.E., Zaitsev B.D., Joshi S.G., Teplykh A.A. // Acoust. Phys. 2007. V. 53. № 5. P. 557. https://doi.org/10.1134/S1063771007050041
  9. 9. Anisimkin I.V., Anisimkin V.I. // IEEE Trans. 2006. V. UFFC-53. № 8. P. 1487. https://doi.org/10.1109/TUFFC.2006.1665106
  10. 10. Hamidullah M., Elie-Caille C., Leblois T. // J. Phys. D: Appl. Phys. 2022. V. 55. № 9. P. 094003. https://doi.org/10.1088/1361-6463/ac39c5
  11. 11. Mansoorzare H., Shahraini S., Todi A. et al. // IEEE Trans. 2020. V. UFFC-67. № 6. P. 1210–1218. https://doi.org/10.1109/TUFFC.2019.2955402
  12. 12. Anisimkin V., Shamsutdinova E., Li P. et al. // Sensors. 2022. V. 22. № 7. P. 2727. https://doi.org/10.3390/s22072727
  13. 13. Anisimkin V.I., Voronova N.V. // Ultrasonics. 2021. V. 116. Article No. 106496. https://doi.org/10.1016/j.ultras.2021.106496
  14. 14. Anisimkin V., Kolesov V., Kuznetsova A. et al. // Sensors. 2021. V. 21. № 3. P. 919.
  15. 15. Adler E.L., Slaboszewics J.K., Farnell G.W., Jen C.K. // IEEE Trans. 1990. V. UFFC-37. № 3. P. 215.
  16. 16. Slobodnik A.J., Jr., Conway E.D., Delmonico R.T. // J. Acoust. Soc. Am. 1974. V. 56. № 4. P. 1307.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library