- PII
- 10.31857/S0033849423090231-1
- DOI
- 10.31857/S0033849423090231
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 68 / Issue number 9
- Pages
- 893-896
- Abstract
- The influence of nonlinearity on the displacement of a singular point in a system of two connected Duffing oscillators when coupling coefficients and insertion losses change. It is shown that the displacement of the singular point when the nonlinearity coefficient changes is accompanied by a decrease in the amplitude of the excited oscillations and a shift in the resonant frequency. The threshold values of the nonlinearity, coupling, and insertion loss coefficients at which a singular point occurs are numerically found. It is shown that an increase in the nonlinearity coefficient leads to a decrease in the threshold value of the insertion losses required for the formation of a singular point.
- Keywords
- two connected Duffing oscillators ecrease in the amplitude of the excited oscillations shift in the resonant frequency
- Date of publication
- 16.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 11
References
- 1. Kato T. A Short Introduction to Perturbation Theory for Linear Operators. N.Y.: Springer., 2011. https://doi.org/10.1007/978-1-4612-5700-4
- 2. Wiersig J. // Photon. Res. 2020. V. 8. № 9. P. 1457. https://doi.org/10.1364/PRJ.396115
- 3. Weidong C., Wang C., Chen W. et al. // Nat. Nanotech. 2022. V. 17. Article No. 262268. https://doi.org/10.1038/s41565-021-01038-4
- 4. Зябловский А.А., Виноградов А.П., Пухов А.А. и др. // Успехи физ. наук. 2014. Т. 184. № 11. С. 1177. https://doi.org/10.3367/UFNr.0184.201411b.1177
- 5. Rüter C., Makris K., El-Ganainy R. // Nat. Phys. 2010. V. 6. Article No. 192195. https://doi.org/10.1038/nphys1515
- 6. Вилков Е.A., Бышевский-Конопко О.А., Темная О.С. и др. // Письма в ЖТФ. 2022. Т. 48. № 24. С. 38. https://doi.org/10.21883/PJTF.2022.24.54023.19291
- 7. Zhu X., Ramezani H., Shi C. et al. // Phys. Rev. X 2014. V. 4. Article No. 031042. https://doi.org/10.1103/PhysRevX.4.031042
- 8. Wittrock S., Perna S., Lebrun R. et al. // arXiv: 2108.04804.
- 9. Liu H., Sun D., Zhang C. et al. // Sci. Adv. 2019. V. 5. № 11. Article No. aax9144. https://doi.org/10.1126/sciadv.aax9144
- 10. Temnaya O.S., Safin A.R., Kalyabin D.V., Nikitov S.A. // Phys. Rev. Appl. 2022. V. 18. Article No. 014003. https://doi.org/10.1103/PhysRevApplied.18.014003
- 11. Sadovnikov A.V., Zyablovsky A.A., Dorofeenko A.V., Nikitov S.A. // Phys. Rev. Appl. 2022. V. 18. Article No. 024073. https://doi.org/10.1103/PhysRevApplied.18.024073
- 12. Rajasekar S., Sanjuan M. Nonlinear Resonances. Cham: Springer, 2015.
- 13. Рабинович И.М., Трубецков Д.И. Введение в теорию колебаний и волн. Ижевск: НИЦ РХД, 2000.
- 14. Moon K.-W., Chun B.S., Kim W. et al. // Sci. Reports. 2014. V. 4. Article No. 6170.