RAS PhysicsРадиотехника и электроника Journal of Communications Technology and Electronics

  • ISSN (Print) 0033-8494
  • ISSN (Online) 3034-5901

The influence of nonlinearity on a singular point in a system of coupled Duffing oscillators

PII
10.31857/S0033849423090231-1
DOI
10.31857/S0033849423090231
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 9
Pages
893-896
Abstract
The influence of nonlinearity on the displacement of a singular point in a system of two connected Duffing oscillators when coupling coefficients and insertion losses change. It is shown that the displacement of the singular point when the nonlinearity coefficient changes is accompanied by a decrease in the amplitude of the excited oscillations and a shift in the resonant frequency. The threshold values of the nonlinearity, coupling, and insertion loss coefficients at which a singular point occurs are numerically found. It is shown that an increase in the nonlinearity coefficient leads to a decrease in the threshold value of the insertion losses required for the formation of a singular point.
Keywords
two connected Duffing oscillators ecrease in the amplitude of the excited oscillations shift in the resonant frequency
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
11

References

  1. 1. Kato T. A Short Introduction to Perturbation Theory for Linear Operators. N.Y.: Springer., 2011. https://doi.org/10.1007/978-1-4612-5700-4
  2. 2. Wiersig J. // Photon. Res. 2020. V. 8. № 9. P. 1457. https://doi.org/10.1364/PRJ.396115
  3. 3. Weidong C., Wang C., Chen W. et al. // Nat. Nanotech. 2022. V. 17. Article No. 262268. https://doi.org/10.1038/s41565-021-01038-4
  4. 4. Зябловский А.А., Виноградов А.П., Пухов А.А. и др. // Успехи физ. наук. 2014. Т. 184. № 11. С. 1177. https://doi.org/10.3367/UFNr.0184.201411b.1177
  5. 5. Rüter C., Makris K., El-Ganainy R. // Nat. Phys. 2010. V. 6. Article No. 192195. https://doi.org/10.1038/nphys1515
  6. 6. Вилков Е.A., Бышевский-Конопко О.А., Темная О.С. и др. // Письма в ЖТФ. 2022. Т. 48. № 24. С. 38. https://doi.org/10.21883/PJTF.2022.24.54023.19291
  7. 7. Zhu X., Ramezani H., Shi C. et al. // Phys. Rev. X 2014. V. 4. Article No. 031042. https://doi.org/10.1103/PhysRevX.4.031042
  8. 8. Wittrock S., Perna S., Lebrun R. et al. // arXiv: 2108.04804.
  9. 9. Liu H., Sun D., Zhang C. et al. // Sci. Adv. 2019. V. 5. № 11. Article No. aax9144. https://doi.org/10.1126/sciadv.aax9144
  10. 10. Temnaya O.S., Safin A.R., Kalyabin D.V., Nikitov S.A. // Phys. Rev. Appl. 2022. V. 18. Article No. 014003. https://doi.org/10.1103/PhysRevApplied.18.014003
  11. 11. Sadovnikov A.V., Zyablovsky A.A., Dorofeenko A.V., Nikitov S.A. // Phys. Rev. Appl. 2022. V. 18. Article No. 024073. https://doi.org/10.1103/PhysRevApplied.18.024073
  12. 12. Rajasekar S., Sanjuan M. Nonlinear Resonances. Cham: Springer, 2015.
  13. 13. Рабинович И.М., Трубецков Д.И. Введение в теорию колебаний и волн. Ижевск: НИЦ РХД, 2000.
  14. 14. Moon K.-W., Chun B.S., Kim W. et al. // Sci. Reports. 2014. V. 4. Article No. 6170.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library