RAS PhysicsРадиотехника и электроника Journal of Communications Technology and Electronics

  • ISSN (Print) 0033-8494
  • ISSN (Online) 3034-5901

Comparison of methods for calculating superconducting integrated structures using semi-analytical calculations and in three-dimensional numerical modeling programs

PII
10.31857/S0033849423090115-1
DOI
10.31857/S0033849423090115
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 9
Pages
897-903
Abstract
Modeling of superconducting integrated structures in the frequency range was carried out 300...750 GHz by two methods: 1) using ABCD matrices associated with each element of the circuit; 2) using the Ansys HFSS program. The surface impedance values of superconducting films are calculated numerically using expressions from the Matthies–Bardeen theory. It was found that for samples with microstrip line widths less than a quarter of the wavelength, both models are in qualitative agreement with each other and with experimental data. Shown that with an increase in the width of the lines and the geometric dimensions of other structural elements, transverse modes arise, as well as curvature of the wave front propagating along the lines waves, which causes differences between the semi-analytical and numerical calculations, which coincide with the experiment for all samples.
Keywords
surface impedance values of superconducting films Matthies–Bardeen theory
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Kojima T., Kroug M., Takeda M. et al. // Appl. Phys. Express 2009. V. 2. № 10. P. 102201. https://doi.org/10.1143/APEX.2.102201
  2. 2. De Lange G., Birk M., Boersma D. et al. // Superconductor Sci. Technol. 2010. V. 23. № 4. P. 045016. https://doi.org/10.1088/0953-2048/23/4/045016
  3. 3. Billade B., Pavolotsky A., Belitsky V. // IEEE Trans. 2013. V. TST-3. № 4. P. 416. https://doi.org/10.1109/TTHZ.2013.2255734
  4. 4. Шмидт В.В. Введение в физику сверхпроводников М.: МЦНМО, 2000.
  5. 5. Baksheeva K.A., Ozhegov R.V., Goltsman G.N. et al. // IEEE Trans. 2021. V. TST-11. № 4. P. 381. https://doi.org/10.1109/TTHZ.2021.3066099
  6. 6. Kinev N.V., Rudakov K.I., Filippenko L.V., Koshelets V.P. et al. // Phys. Solid State. 2021. V. 63. P. 1414. https://doi.org/10.1134/S1063783421090171
  7. 7. Barychev A.M. Superconductor–Insulator–Superconductor THz Mixer Integrated with a Superconducting Flux-Flow Oscillator. PhD thesis, Delft: Delft Univ. Technol, 2005. 144 p.
  8. 8. Водзяновский Я.О., Худченко А.В., Кошелец В.П. // ФТТ. 2022. Т. 64. № 10. С. 1385.
  9. 9. Фуско В. СВЧ цепи. М.: Радио и связь, 1990.
  10. 10. Frickey D.A. // IEEE Trans. 1994. V. MTT-42. № 2. P. 205. https://doi.org/10.1109/22.275248
  11. 11. Шевченко М.С., Филиппенко Л.В., Киселев О.С., Кошелец В.П. // ФТТ. 2022. Т. 64. № 9. С. 1223.
  12. 12. Koshelets V.P., Shitov S.V., Filippenko L.V. et al. // Superconducting Sci. Technol. 2004. V. 17. № 127. https://doi.org/10.1088/0953-2048/17/5/007
  13. 13. Koshelets V.P., Shitov S.V. // Superconductor Sci. Technol. 2000. V. 13. № 5. P. 53. https://doi.org/10.1088/0953-2048/13/5/201
  14. 14. Tucker J.R., Feldman M.J. // Rev. Mod. Phys. 1985. V. 57. № 4. P. 1055. https://doi.org/10.1103/RevModPhys.57.1055
  15. 15. Filippenko L.V., Shitov S.V., Dmitriev P.N. et al. // IEEE Trans. 2001. V. TAS-11. № 1. P. 816. https://doi.org/10.1109/77.919469
  16. 16. Fominsky M.Yu., Filippenko L.V., Chekushkin A.M. et al. // Electronic. 2021. V. 10. № 23. P. 2944. https://doi.org/10.3390/electronics10232944
  17. 17. Tolpygo S.K., Bolkhovky V., Weir T.J. et al. // IEEE Trans. 2014. V. TAS-25. № 3. P. 1. https://doi.org/10.1109/TASC.2014.2369213
  18. 18. Атепалихин А.А., Хан Ф.В., Филиппенко Л.В., Кошелец В.П. // ФТТ. 2022. Т. 64. № 10. С. 1378. https://doi.org/10.21883/PSS.2022.10.54219.41HH
  19. 19. Шитов С.В. Интегральные устройства на сверхпроводниковых туннельных переходах для приемников миллиметровых и субмиллиметровых волн. Дис. … д-ра физ.-мат. наук. М.: ИРЭ им. В.А. Котельникова РАН, 2003. 428 с.
  20. 20. Yassin G., Withington S. // J. Phys. D: Appl. Phys. 1995. V. 28. № 9. P. 1983. https://doi.org/10.1088/0022-3727/28/9/028
  21. 21. Swihart J.C. // J. Appl. Phys. 1961. V. 32. № 3. P. 461. https://doi.org/10.1063/1.1736025
  22. 22. Mattis D.C., Bardeen J. // Phys. Rev. 1958. V. 111. № 2. P. 412. https://doi.org/10.1103/PhysRev.111.412
  23. 23. Zimmermann W., Brandt E.H., Bauer M. et al. // Physica C: Superconductivity. 1991. V. 183. № 1–3. P. 99. https://doi.org/10.1016/0921-4534 (91)90771-P
  24. 24. Pöpel R. // J. Appl. Phys. 1989. V. 66. № 12. P. 5950. https://doi.org/10.1063/1.343622
  25. 25. Nam S.B. // Phys. Rev. 1967. V. 156. № 2. P. 470. https://doi.org/10.1103/PhysRev.156.470
  26. 26. Банков С.Е., Курушин А.А., Разевиг В.Д. // Анализ и оптимизация СВЧ-структур с помощью HFSS. Учеб. пособие. М.: СОЛОН-Пресс, 2005.
  27. 27. Kerr A.R., Pan S.K. // Int. J. Infrared and Millimeter Waves. 1990. V. 11. № 10. P. 1169. https://doi.org/10.1007/BF01014738
  28. 28. Belitsky V., Risacher C., Pantaleev M., Vassilev V. // Int. J. Infrared and Millimeter Waves. 2006. V. 27. № 1. P. 809. https://doi.org/10.1007/s10762-006-9116-5
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library