- PII
- 10.31857/S0033849423050145-1
- DOI
- 10.31857/S0033849423050145
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 68 / Issue number 5
- Pages
- 424-431
- Abstract
- An exact analytical formula is obtained that relates the experimental and theoretical parameters of the spectral line described by the Tsallis function, which includes the Gaussian, Lorentzian, line shapes intermediate between them, and super-Lorentzian as special cases. The procedure for the numerical calculation of the theoretical parameters of the line shape is studied by the example of electron spin resonance spectra. The effect of complicating experimental factors, including the noise and the analog signal digitization discreteness, on the accuracy of determining the theoretical Tsallian parameters is examined. It is shown that the proposed method for determining the theoretical parameters of the spectral line is not inferior in accuracy to the method for minimizing the root-mean-square error functional. It is predicted that the new approach can be used as an alternative to the available spectral line shape analysis techniques.
- Keywords
- spectral line shape analysis techniques Tsallis function electron spin resonance spectra
- Date of publication
- 16.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 12
References
- 1. Poole C.P., Farach H.A. // Bull. Magn. Resonance. 1980. V. 1. № 4. P. 162.
- 2. Bertrand P. Electron Paramagnetic Resonance Spectroscopy: Applications. Cham: Springer, 2020.
- 3. Electron Paramagnetic Resonance: a Practitioner’s Toolkit / Eds. by M. Brustolon, G. Giamello. Hoboken Wiley, 2009.
- 4. Stoneham A.M. // J. Phys. D: Appl. Phys. 1972. V. 5. № 3. P. 670.
- 5. Posener D.W. // Australian J. Phys. 1959. V. 12. № 4. P. 184.
- 6. Wertheim G.K., Butler M.A., West K.W., Buchanan D.N.E. // Rev. Sci. Instrum. 1974. V. 45. № 11. P. 1369.
- 7. Maltempo M.M. // J. Magn. Resonance. 1986. V. 68. P. 102.
- 8. Howarth D.F., Weil J.A., Zimpel Z. // J. Magn. Reonance. 2003. V. 161. P. 215.
- 9. Sebby K.B., Walter E.D., Usselman R.J. et al. // J. Phys. Chem. B. 2011. V. 115. № 16. P. 4613.
- 10. Жидомиров Г.М., Лебедев Я.С., Добряков С.Н. и др. Интерпретация сложных спектров ЭПР. М.: Наука, 1975.
- 11. Edmonds A.M., Newton M.E., Martineau P.M. et al. // Phys. Rev. B. 2008. V. 77. № 24. Article No. 245205.
- 12. Кокшаров Ю.А. // ФТТ. 2015. Т. 57. № 10. С. 1960.
- 13. Scott E., Drake M., Reimer J.A. // J. Magn. Resonance. 2016. V. 264. P. 154.
- 14. Стельмах В.Ф., Стригуцкий Л.В. // Журн. прикладной спектроскопии. 1998. Т. 65. № 2. С. 224.
- 15. Mitchell D.G., Quine R.W., Tseinlin M. et al. // J. Phys. Chem. B. 2011. V. 115. № 24. P. 7986.
- 16. Самарский А.А., Гулин А.В. Численные методы: Учеб. пособие для вузов. М.: Наука, 1989.
- 17. Truong G.-W., Anstie J.D., May E.F. et al. // Nature Commun. 2015. V. 6. Article No. 8345. https://doi.org/10.1038/ncomms9345
- 18. Ajoy A., Safvati B., Nazaryan N. et al. // Nature Commun. 2019. V. 10. Article No. 5160. https://doi.org/10.1038/s41467-019-13042-3
- 19. Ивичева С.Е., Каргин Ю.Ф., Овченков Е.А. и др. // ФТТ. 2011. Т. 53. № 6. С. 1053.
- 20. Гуляев Ю.В., Черепенин В.А., Вдовин В.А. и др. // РЭ. 2015. Т. 60. № 10. С. 1051. https://doi.org/10.7868/S0033849415100034