RAS PhysicsРадиотехника и электроника Journal of Communications Technology and Electronics

  • ISSN (Print) 0033-8494
  • ISSN (Online) 3034-5901

Analytical Formula for the Relation between the Experimental and Theoretical Parameters of the Tsallis Spectral Line

PII
10.31857/S0033849423050145-1
DOI
10.31857/S0033849423050145
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 5
Pages
424-431
Abstract
An exact analytical formula is obtained that relates the experimental and theoretical parameters of the spectral line described by the Tsallis function, which includes the Gaussian, Lorentzian, line shapes intermediate between them, and super-Lorentzian as special cases. The procedure for the numerical calculation of the theoretical parameters of the line shape is studied by the example of electron spin resonance spectra. The effect of complicating experimental factors, including the noise and the analog signal digitization discreteness, on the accuracy of determining the theoretical Tsallian parameters is examined. It is shown that the proposed method for determining the theoretical parameters of the spectral line is not inferior in accuracy to the method for minimizing the root-mean-square error functional. It is predicted that the new approach can be used as an alternative to the available spectral line shape analysis techniques.
Keywords
spectral line shape analysis techniques Tsallis function electron spin resonance spectra
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Poole C.P., Farach H.A. // Bull. Magn. Resonance. 1980. V. 1. № 4. P. 162.
  2. 2. Bertrand P. Electron Paramagnetic Resonance Spectroscopy: Applications. Cham: Springer, 2020.
  3. 3. Electron Paramagnetic Resonance: a Practitioner’s Toolkit / Eds. by M. Brustolon, G. Giamello. Hoboken Wiley, 2009.
  4. 4. Stoneham A.M. // J. Phys. D: Appl. Phys. 1972. V. 5. № 3. P. 670.
  5. 5. Posener D.W. // Australian J. Phys. 1959. V. 12. № 4. P. 184.
  6. 6. Wertheim G.K., Butler M.A., West K.W., Buchanan D.N.E. // Rev. Sci. Instrum. 1974. V. 45. № 11. P. 1369.
  7. 7. Maltempo M.M. // J. Magn. Resonance. 1986. V. 68. P. 102.
  8. 8. Howarth D.F., Weil J.A., Zimpel Z. // J. Magn. Reonance. 2003. V. 161. P. 215.
  9. 9. Sebby K.B., Walter E.D., Usselman R.J. et al. // J. Phys. Chem. B. 2011. V. 115. № 16. P. 4613.
  10. 10. Жидомиров Г.М., Лебедев Я.С., Добряков С.Н. и др. Интерпретация сложных спектров ЭПР. М.: Наука, 1975.
  11. 11. Edmonds A.M., Newton M.E., Martineau P.M. et al. // Phys. Rev. B. 2008. V. 77. № 24. Article No. 245205.
  12. 12. Кокшаров Ю.А. // ФТТ. 2015. Т. 57. № 10. С. 1960.
  13. 13. Scott E., Drake M., Reimer J.A. // J. Magn. Resonance. 2016. V. 264. P. 154.
  14. 14. Стельмах В.Ф., Стригуцкий Л.В. // Журн. прикладной спектроскопии. 1998. Т. 65. № 2. С. 224.
  15. 15. Mitchell D.G., Quine R.W., Tseinlin M. et al. // J. Phys. Chem. B. 2011. V. 115. № 24. P. 7986.
  16. 16. Самарский А.А., Гулин А.В. Численные методы: Учеб. пособие для вузов. М.: Наука, 1989.
  17. 17. Truong G.-W., Anstie J.D., May E.F. et al. // Nature Commun. 2015. V. 6. Article No. 8345. https://doi.org/10.1038/ncomms9345
  18. 18. Ajoy A., Safvati B., Nazaryan N. et al. // Nature Commun. 2019. V. 10. Article No. 5160. https://doi.org/10.1038/s41467-019-13042-3
  19. 19. Ивичева С.Е., Каргин Ю.Ф., Овченков Е.А. и др. // ФТТ. 2011. Т. 53. № 6. С. 1053.
  20. 20. Гуляев Ю.В., Черепенин В.А., Вдовин В.А. и др. // РЭ. 2015. Т. 60. № 10. С. 1051. https://doi.org/10.7868/S0033849415100034
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library