RAS PhysicsРадиотехника и электроника Journal of Communications Technology and Electronics

  • ISSN (Print) 0033-8494
  • ISSN (Online) 3034-5901

Functionalities of Ni–Ti Shape Memory Alloys and Their Efficiency as Event Actuators of Microelectromechanical Systems

PII
10.31857/S0033849423040046-1
DOI
10.31857/S0033849423040046
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 4
Pages
338-345
Abstract
The functionalities of Ni–Ti alloys subjected to different deformation treatments are studied. A critical stress corresponding to the onset of degradation of the functional properties were determined; it was found that this stress is about twice as low as the yield stress. The efficiency coefficients of virtual thermodynamic machines with a working body made of the investigated materials were calculated and compared with the efficiency of a Carnot engine based on the same materials; the ideality factor has been calculated under the condition of actuating at stresses no higher than critical ones. It has been established that, at the single actuation, the highest ideality factor (9.7%) is characteristic of a material consisting of bars 20 to 5 mm in diameter obtained by warm forging at 350°C. It has been determined that, at discontinuous operation under stresses lower than the critical ones by a factor of 1.2, the ideality factor is 7.4–7.7% for alloys subjected to hot forging or equal channel angular pressing combined with warm forging.
Keywords
critical stress virtual thermodynamic machine Carnot engine
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Jani J.M., Leary M., Subic A., Gibson M.A. // Materials and Design. 2014. V. 56. P. 1078. https://doi.org/10.1016/j.matdes.2013.11.084
  2. 2. Otsuka K., Ren X. // Prog. Mater. Sci. 2005. V. 50. P. 511. https://doi.org/10.1016/j.pmatsci.2004.10.001
  3. 3. Калашников В.С., Андреев В.А., Коледов В.В. и др. // Металловедение и термическая обработка металлов. 2019. Т. 770. С. 45.
  4. 4. Калашников В.С., Коледов В.В., Кучин Д.С. и др. // Приборы и техника эксперимента. 2018. № 2. С. 139. https://doi.org/10.7868/S0032816218020155
  5. 5. Калашников В.С., Коледов В.В., Кучин Д.С. и др. // Приборы и техника эксперимента. 2022. Т. 65. № 1. С. 139. https://doi.org/10.31857/S0032816222010049
  6. 6. Smith J.F., Lück R., Jiang Q. et al. // J. Phase Equilibria. 1993. V. 14. № 4. P. 494. https://doi.org/10.1007/BF02671969
  7. 7. Stachiv I., Alarcon E., Lamac M. // Metals. 2021. V. 11. № 3. Article No. 415. https://doi.org/10.3390/met11030415
  8. 8. Wang X., Verlinden B., Humbeeck J.V. // Intermetallics. 2015. V. 62. P. 43. https://doi.org/10.1016/j.intermet.2015.03.006
  9. 9. Калашников В.С., Мусабиров И.И., Коледов В.В. и др. // ЖТФ. 2020. Т. 90. № 4. С. 603. https://doi.org/10.21883/JTF.2020.04.49084.110-19
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library