RAS PhysicsРадиотехника и электроника Journal of Communications Technology and Electronics

  • ISSN (Print) 0033-8494
  • ISSN (Online) 3034-5901

Frequency Converters for the Terahertz and Infrared Ranges

PII
10.31857/S0033849423010084-1
DOI
10.31857/S0033849423010084
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 1
Pages
30-36
Abstract
A method for solving the problem of nonlinear diffraction on two-dimensional periodic gratings of graphene ribbons has been developed. The third-order nonlinear conductivity of graphene under the action of two waves is taken into account, which is determined by the field of the pump wave, for which we use the field on graphene ribbons obtained by solving the linear diffraction problem. Numerical analysis shows the efficiency of nonlinear frequency conversion in the terahertz and infrared ranges when the frequencies of the incident pump and signal waves coincide with the resonant frequencies of the fundamental and higher order modes of surface plasmon polaritons in graphene ribbons.
Keywords
nonlinear diffraction graphene ribbons surface plasmon polaritons
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. Nagatsuma T., Horiguchi Sh., Minamikata Y. et al. // Opt. Express. 2013. V. 21. № 20. P. 23736.
  2. 2. HouY., Jiang C. // Current Chinese Physics. 2021. V. 1. № 3. P. 299. https://doi.org/10.2174/221029810166621020416263
  3. 3. Hu X., Zeng M., Wang A., Zhu L. et al. // Opt. Express. 2015 V. 23. № 20. P. 26158.
  4. 4. Deng H., Huang., He Y., Ye F. // Chinese Physics. B. 2021. V. 30. № 4. P. 044213.
  5. 5. Ooi K. J.A., Cheng J.L., Sipe J.E. et al. // APL Photonics. 2016. V. 1. № 4. P. 046101. https://doi.org/10.1063/1.4948417
  6. 6. Cox J.D., Garcia de Abajo F.J. // ACS Photonics. 2015. V. 2. № 3. P. 306.
  7. 7. Cao J., Kong Y., Gao S., Liu C. // Optics Commun. 2018. V. 406. P. 183.
  8. 8. Лepep A.M. // PЭ. 2012. T. 57. № 11. C. 1160. https://doi.org/10.1134/S106422691210004X
  9. 9. Лерер А.М., Иванова И.Н. // РЭ. 2016. Т. 61. № 5. С. 435. https://doi.org/10.1134/S1064226916050089
  10. 10. Лерер А.М., Макеева Г.С., Черепанов В.В. // РЭ. 2021. Т. 66. № 6. С. 543. https://doi.org/10.31857/S0033849421060188
  11. 11. Hanson G.W. // J. Appl. Phys. 2008. V. 103. № 6. P. 064302.
  12. 12. Cheng J.L., Vermeulen N., Sipe J. // Phys. Rev. B. 2015. V. 91. № 23. P. 235320.
  13. 13. Mikhailov S.A. // Phys. Rev. B. 2016. V. 93. № 8. P. 085403.
  14. 14. Лерер А.М., Иванова И.Н., Макеева Г.С., Черепанов В.В. // Оптика и спектроскопия. 2021. Т. 129. № 3. С. 342.
  15. 15. Cox J.D., Garcia de Abajo F.J. // Accounts Chemical Research. 2019. V. 52. № 9. P. 2536.
  16. 16. Lerer A.M., Makeeva G.S., Cherepanov V.V. // Mater. 2020 Int. Conf. Actual Problems of Electron Devices Engineering (APEDE). Saratov. 24–25 Sept. N.Y.: IEEE, 2020. P. 269. https://doi.org/10.1109/APEDE48864.2020.9255492
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library