- PII
- S30345901S0033849425040064-1
- DOI
- 10.7868/S3034590125040064
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 70 / Issue number 4
- Pages
- 370-375
- Abstract
- The operation of a spintronic detector in the near field of an antenna emitting a microwave signal at a frequency of 10 GHz has been investigated. The feasibility of using a detector based on a LusFesOn/Pt heterostructure, operating due to the inverse spin Hall effect, has been studied. A comparison was made between the experimentally measured output voltage of the detector and theoretical calculations of the power distribution of the electromagnetic field, performed using COMSOL Multiphysics. The sensitivity of the detector was determined, and the dependence of the output signal on the distance to the radiation source was measured. The obtained results confirm the feasibility of using spintronic heterostructures in wireless data and energy transmission systems. The prospects for using the detector in wireless communication and data transmission systems operating in the near field of an antenna, such as RFID (Radio Frequency Identification) and NFC (Near Field Communication), are considered.
- Keywords
- спинтронный детектор антенна ближнее поле волновод ферромагнитная пленка выходное напряжение микроволновый сигнал электродинамическое моделирование RFID NFC
- Date of publication
- 15.04.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 68
References
- 1. Locatelli N., Cros V., Grollier J. // Nature Mater. 2014. V. 13. № 1. P. 11.
- 2. Shao Q., Li P., Liu L. et al. // IEEE Trans. 2021. V. MAG-57. № 7. Article No. 800439.
- 3. Никитов С.А., Сафин А.Р., Калябин Д.В. и др. // Успехи физ. наук. 2020. Т. 190. № 10. С. 1009.
- 4. Puebla J., Kim J., Kondou K., Otani Y. // Commun. Mater. 2020. V. 1. № 1. Article № 24.
- 5. Hemour S. Zhao Y., Lorenz C.H.P. et al. // IEEE Trans. 2014. V. MAG-62. № 4. P. 965.
- 6. Liu L., Li Y., Liu Y. et al. // Phys. Rev. B. 2020. V. 102. № 1. P. 014411.
- 7. Sharma V., Saha J., Patnaik S., Kuanr B.K. // J. Magn. Magn. Mater. 2017. V. 439. P. 277.
- 8. Jermain C.L., Paik H., Aradhya S.V. et al. // Appl. Phys. Lett. 2016. V. 109. № 19. P. 192408.
- 9. Akhtar M.N., Yousaf M., Khan S.N. et al. // Ceramics Int. 2017. V. 43. № 18. P. 17032.
- 10. Волков Д.А., Габриелян Д.А., Матвеев А.А. и др. // Письма в ЖЭТФ. 2024. Т. 119. № 5. С. 348.
- 11. Tserkovnyak Y., Brataas A., Bauer G.E. // Phys. Rev. Lett. 2002. V. 88. № 11. P. 117601.
- 12. Tserkovnyak Y., Ochoa H. // Phys. Rev. B. 2017. V. 96. № 10. P. 100402.
- 13. Zhu L., Ralph D.C., Buhrman R.A. // Phys. Rev. Lett. 2019. V. 123. № 5. P. 057203.
- 14. Никулин Ю.В., Хивинцев Ю.В., Селезнев М.Е. и др. // Письма в ЖЭТФ. 2024. Т. 119. № 9. С. 676.