RAS PhysicsРадиотехника и электроника Journal of Communications Technology and Electronics

  • ISSN (Print) 0033-8494
  • ISSN (Online) 3034-5901

Detection of microwave radiation by a ferromagnetic/normal metal heterostructure in the near field of an antenna

PII
S30345901S0033849425040064-1
DOI
10.7868/S3034590125040064
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 4
Pages
370-375
Abstract
The operation of a spintronic detector in the near field of an antenna emitting a microwave signal at a frequency of 10 GHz has been investigated. The feasibility of using a detector based on a LusFesOn/Pt heterostructure, operating due to the inverse spin Hall effect, has been studied. A comparison was made between the experimentally measured output voltage of the detector and theoretical calculations of the power distribution of the electromagnetic field, performed using COMSOL Multiphysics. The sensitivity of the detector was determined, and the dependence of the output signal on the distance to the radiation source was measured. The obtained results confirm the feasibility of using spintronic heterostructures in wireless data and energy transmission systems. The prospects for using the detector in wireless communication and data transmission systems operating in the near field of an antenna, such as RFID (Radio Frequency Identification) and NFC (Near Field Communication), are considered.
Keywords
спинтронный детектор антенна ближнее поле волновод ферромагнитная пленка выходное напряжение микроволновый сигнал электродинамическое моделирование RFID NFC
Date of publication
15.04.2025
Year of publication
2025
Number of purchasers
0
Views
68

References

  1. 1. Locatelli N., Cros V., Grollier J. // Nature Mater. 2014. V. 13. № 1. P. 11.
  2. 2. Shao Q., Li P., Liu L. et al. // IEEE Trans. 2021. V. MAG-57. № 7. Article No. 800439.
  3. 3. Никитов С.А., Сафин А.Р., Калябин Д.В. и др. // Успехи физ. наук. 2020. Т. 190. № 10. С. 1009.
  4. 4. Puebla J., Kim J., Kondou K., Otani Y. // Commun. Mater. 2020. V. 1. № 1. Article № 24.
  5. 5. Hemour S. Zhao Y., Lorenz C.H.P. et al. // IEEE Trans. 2014. V. MAG-62. № 4. P. 965.
  6. 6. Liu L., Li Y., Liu Y. et al. // Phys. Rev. B. 2020. V. 102. № 1. P. 014411.
  7. 7. Sharma V., Saha J., Patnaik S., Kuanr B.K. // J. Magn. Magn. Mater. 2017. V. 439. P. 277.
  8. 8. Jermain C.L., Paik H., Aradhya S.V. et al. // Appl. Phys. Lett. 2016. V. 109. № 19. P. 192408.
  9. 9. Akhtar M.N., Yousaf M., Khan S.N. et al. // Ceramics Int. 2017. V. 43. № 18. P. 17032.
  10. 10. Волков Д.А., Габриелян Д.А., Матвеев А.А. и др. // Письма в ЖЭТФ. 2024. Т. 119. № 5. С. 348.
  11. 11. Tserkovnyak Y., Brataas A., Bauer G.E. // Phys. Rev. Lett. 2002. V. 88. № 11. P. 117601.
  12. 12. Tserkovnyak Y., Ochoa H. // Phys. Rev. B. 2017. V. 96. № 10. P. 100402.
  13. 13. Zhu L., Ralph D.C., Buhrman R.A. // Phys. Rev. Lett. 2019. V. 123. № 5. P. 057203.
  14. 14. Никулин Ю.В., Хивинцев Ю.В., Селезнев М.Е. и др. // Письма в ЖЭТФ. 2024. Т. 119. № 9. С. 676.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library