RAS PhysicsРадиотехника и электроника Journal of Communications Technology and Electronics

  • ISSN (Print) 0033-8494
  • ISSN (Online) 3034-5901

SPIN WAVES IN MAGNETIC MICROSTRUCTURES: MAGNON LOGIC AND INFORMATION PROCESSING

PII
S30345901S0033849425040017-1
DOI
10.7868/S3034590125040017
Publication type
Review
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 4
Pages
292-331
Abstract
This paper presents a review of the current state of research in magnonics aimed at developing energy-efficient element base for information systems and technologies based on the effects of excitation, propagation and detection of spin waves in thin-film magnetic micro- and nanostructures. The progress achieved in the development of materials for spin waveguides, as well as in the methods of excitation, reception and control of spin wave propagation is discussed. Practical implementations of the effects of spin wave propagation in magnetic microstructures for constructing a number of logical keys, processing magnetic images, neuromorphic computing, ultra-high-frequency information processing devices and magnetic sensors, as well as problems that need to be solved for further development are considered.
Keywords
магнитные пленки и микроструктуры на их основе спиновые волны антенны спиновых волн спектр и распространение спиновых волн в магнитных микроструктурах электронная элементная база на принципах магноники
Date of publication
15.04.2025
Year of publication
2025
Number of purchasers
0
Views
49

References

  1. 1. Ферт А. // Успехи физ. наук. 2008. Т. 178. № 12. С. 1336.
  2. 2. Грюнберг П.А. // Успехи физ. наук. 2008. Т. 178. № 12. С. 1349.
  3. 3. The Nobel Prize in Physics 2007. Stokholm: The Royal Swedish Academy of Sciences https://www.nobelprize.org/uploads/2013/06/popular-physicsprize2007.pdf
  4. 4. Wolf S.A., Awschalom D.D., Buhrman R.A. et al. // Science. 2001. V. 294. № 5546. P. 1488.
  5. 5. Zutic I., Fabian J., Das Sarma S. // Rev. Mod. Phys. 2004. V. 76. № 2. V. 76. P. 323.
  6. 6. Bernstein K., Cavin R.K., Porod W. et al. // Proc. IEEE.2010. V. 98. № 12. P/2169 (2010). https://doi.org/10.1109/JPROC.2010.2066530
  7. 7. Nikonov D.E., Young I.A. // Proc. IEEE. 2013. V. 101. № 12. P. 2498.
  8. 8. Roy K., Bandyopadhyay S., Atulasimha J. // Appl. Phys. Lett. 2011. V. 99. № 6. P. 063108.
  9. 9. Neusser S., Grundler D. // Advanced Mater. 2009. V. 21. № 28. P. 2927.
  10. 10. Serga A.A., Chumak A.V., Hillebrands B. // J. Phys. D: Appl. Phys. 2010. V. 43. № 26. Article No. 264002.
  11. 11. Khitun A., Bao M., Wang K.L. // J. Phys. D: Appl. Phys. 2010. V. 43. № 26. Article No. 264005.
  12. 12. Lenk B., Ulrichs H., Garbs F., Münzenberg M. // Phys. Reports. 2011. V. 507. P. 107.
  13. 13. Krawczyk M., Grundler D. // J. Phys. Cond. Matt. 2014. V. 26. № 12. Article No. 123202. https://doi.org/10.1088/0953-8984/26/12/123202
  14. 14. Chumak A., Vasyuchka V., Serga A., Hillebrands B. // Nature Phys. 2015. V. 11. № 6. P. 453.
  15. 15. Hикитов С.А., Калябин Д.В., Лисенков И.В. и др. // Успехи физ. наук. 2015. Т. 185. № 10. С. 1099.
  16. 16. Xитун А.Г., Кожанов А.Е. // Изв. Саратов. ун-та. Новая Серия. Сер. Физика. 2017. Т. 17. № 4. С. 216.
  17. 17. Levinstein H.J., Licht S., Landorf R.W., Blank S.L. // Appl. Phys. Lett. 1971. V. 19. № 11. P. 486. https://doi.org/10.1063/1.1653784
  18. 18. Schilz W. // Philips Research Reports. 1973. V. 28. № 1. P. 50.
  19. 19. Fletcher R.C., Le Craw R.C., Spencer E.G. // Phys. Rev. 1960. V. 117. № 4. P. 955.
  20. 20. Гуревич А.Г., Мелков Г.А. Магнитные колебаний и волны. М. Физматлит, 1994.
  21. 21. Stancil D.D., Prabhakar A. Spin Waves: Theory and Applications N. Y.: Springer, 2009
  22. 22. Гуляев Ю.В., Зильберман П.Е. Спинволновая электроника. М.: Знание, 1988.
  23. 23. Изв. вузов. Физика. 1988. Т. 31. № 11. С. 3-4.
  24. 24. Hикитов В.А., Никитов С.А. // Зарубеж. радиоэлектрон. 1981. № 12. С. 41.
  25. 25. Звездин А.К., Медников А.М., Попков А.Ф. // Электронная промышленность. 1983. № 8. С. 14.
  26. 26. Вапнэ Г.М. // Обзоры по электронной технике. Сер.1. Электроника СВЧ. 1984. № 8. 80 с.
  27. 27. Pодриг Г.П. // ТИИЭР. 1988. Т. 76. № 2. С. 29.
  28. 28. Kostylev M.P., Serga A.A., Schneider T. et al. // Appl. Phys. Lett. 2005. V. 87. № 15. P. 153501.
  29. 29. Schneider T., Serga A.A., Leven B. et al. // Appl. Phys. Lett. 2008. V. 92. № 2. P. 022505.
  30. 30. Khitun A., Wang K.L. // Superlattices and Microstructures. 2005. V. 38. P. 184. https://doi.org/10.1016/j.spmi.2005.07.001
  31. 31. Khitun A., Bao M., Lee J.-Y. et al. // J. Nanoelectron. Optoelectron. 2008. V. 3. № 1. P. 24. https://doi.org/10.1166/jno.2008.003
  32. 32. Khitun A., Bao M., Wang K.L. // IEEE Trans. 2008. V. MAG-44. № 9. P. 2141. https://doi.org/10.1109/TMAG.2008.2000812
  33. 33. Donahue M.J., Porter D.G. OOMMF User’s Guide. Version 1.0. Report NISTIR6376. Gaithersburg: NIST, 1999. 94 p. https://nvlpubs.nist.gov/nistpubs/Legacy/IR/nistir6376.pdf
  34. 34. Demokritov S.O., Hillebrands B., Slavin A.N. // Phys. Reports. 2001. V. 348. № 6. P. 441. https://doi.org/10.1016/S0370-1573 (00)00116-2
  35. 35. Freeman M.R., Hiebert W.K., Stankiewicz A. // J. Appl. Phys. 1998. V. 83. № 11. P. 6217. https://doi.org/10.1063/1.367716
  36. 36. Hicken R.J., Barman A., Kruglyak V.V., Ladak S. // J. Phys. D: Appl. Phys. 2003. V. 36. № 18. P. 2183
  37. 37. Covington M., Crawford T.M., Parker G.J. // Phys. Rev. Lett. 2002. V. 89. № 23. P. 237202. https://doi.org/10.1103/PhysRevLett.89.237202
  38. 38. Bailleul M., Olligs D., Fermon C., Demokritov S. // Europhys. Lett. 2001. V. 56. № 5. P. 741.
  39. 39. Demidov V.E., Demokritov S.O. // IEEE Trans. 2014. V. MAG-51. № 8. P. 0800215. https://doi.org/10.1109/TMAG.2014.2388196
  40. 40. Chumak A.V., Serga A.A., Hillebrands B. // J. Phys. D: Appl. Phys. 2017. V. 50. № 24. Article No. 244001. https://doi.org/10.1088/1361-6463/aa6a65
  41. 41. Prokopenko O., Bozhko D., Tyberkevych V. et al. // Ukrainian J. Phys. 2019. V. 64. № 10. P. 888. https://doi.org/10.15407/ujpe64.10.888
  42. 42. Minzioni P., Lacava C., Tanabe T. et al. // J. Opt. 2019. V. 21. № 6. P. 063001. https://doi.org/10.1088/2040-8986/ab0e66
  43. 43. Sharaevsky Y.P., Sadovnikov A.V., Beginin E.N. et al. Functional Nanostructures and Metamaterials for Superconducting Spintronics (NanoScience and Technology) / Ed. by A. Sidorenko. Cham: Springer, 2018. P. 221. https://www.springer.com/us/book/9783319904801
  44. 44. Stamps R.L., Breitkreutz S., Åkerman J. et al. // J. Phys. D: Appl. Phys. 2014. V. 47. № 33. Article No. 333001. https://doi.org/10.1088/0022-3727/47/33/333001
  45. 45. Hirohata A., Sukegawa H., Yanagihara H. et al. // IEEE Trans. 2015. V. MAG-51. № 10. Article No. 0800511.
  46. 46. Sander D., Valenzuela S.O., Makarov D. et al. // J. Phys. D: Appl. Phys. 2017. V. 50. № 36. Article No. 363001.
  47. 47. Pan S., Mondal S., Seki T. et al. // Phys. Rev. B. 2016. V. 94. № 18. P. 184417.
  48. 48. Зильберман П.Е., Казаков Г.Т., Тихонов В.В. // РЭ. 1985. Т. 30. № 6. С. 1164.
  49. 49. Kазаков Г.Т., Сухарев А.Г., Филимонов Ю.А. // ФТТ.1990. Т. 32. № 12. С. 3571.
  50. 50. Ciubotaru F., Talmelli G., Devolder T. et al. // Proc. 2018 IEEE Int. Electron Devices Meeting (IEDM), San Francisco. 1-5 Dec. N.Y.: IEEE, 2018. P. 36.1.1. https://doi.org/10.1109/IEDM.2018.8614488.
  51. 51. Goto T., Yoshimoto T., Iwamoto B. et al. // Scientific Reports. 2019. V. 9. Article No. 16472. https://doi.org/10.1038/s41598-019-52889-w
  52. 52. Zografos O., Vaysset A., Sorée B., Raghavan P. Beyond-CMOS Technologies for Next Generation Computer Design / Eds. by R. Topaloglu, H. S. Wong. Cham: Springer, 2019. P. 231. https://doi.org/10.1007/978-3-319-90385-9_7
  53. 53. Chen X.X., Wang Q., Bai F.M. et al. // IEEE Trans. 2016. V. MAG-52. № 7. Article No. 1400104. https://doi.org/10.1109/TMAG.2016.2524637
  54. 54. Sato N., Lee S.-J., Lee S.-W. et al. // Appl. Phys. Express. 2016. V. 9. № 8. Article No. 083001.
  55. 55. Sadovnikov A.V., Beginin E.N., Sheshukova S.E. et al. // Appl. Phys. Lett. 2015. V. 107. № 20. Article No. 202405. https://doi.org/10.1063/1.4936207
  56. 56. Sadovnikov A.V., Beginin E.N., Morozova M.A. et al. // Appl. Phys. Lett. 2016. V. 109. № 4. Article No. 042407. https://doi.org/10.1063/1.4960195
  57. 57. Oдинцов С.А., Бегинин Е.Н., Шешукова С.Е., Садовников А.В. // Письма в ЖЭТФ. 2019. Т. 110. № 6. С. 414. https://doi.org/10.1134/S0370274X19180115
  58. 58. Sadovnikov A.V., Gubanov V.A., Sheshukova S.E. et al. // Phys. Rev. Appl. 2018. V. 9. № 5. Article No. 051002. https://doi.org/10.1103/PhysRevApplied.9.051002
  59. 59. Wang Q., Pirro P., Verba R. et al. // Science Advances. 2018. V. 4. № 1. Article No. e1701517. https://doi.org/10.1126/sciadv.1701517
  60. 60. Wang Q., Kewenig M., Schneider M. et al. // Nature Electronics. 2020. V. 3. № 12. P. 765. https://doi.org/10.1038/s41928-020-00485-6
  61. 61. Kalyabin D.V., Sadovnikov A.V., Beginin E.N., Nikitov S.A. // J. Appl. Phys.2019. V. 126. № 17. Article No. 173907. https://doi.org/10.1063/1.5099358
  62. 62. Beginin E.N., Sadovnikov A.V., Sharaevsky Yu.P., Nikitov S.A. // Solid State Phenom. 2014. V. 215. P. 389. https://doi.org/10.4028/www.scientific.net/SSP.215.389
  63. 63. Davies C.S., Francis A., Sadovnikov A.V. et al. // Phys. Rev. B. 2015. V. 92. № 2. Article No. 020408(R). https://doi.org/10.1103/PhysRevB.92.020408
  64. 64. Sadovnikov A.V., Davies C.S., Grishin S.V. et al. // Appl. Phys. Lett. V. 106. № 19. Article No. 192406. https://doi.org/10.1063/1.4921206
  65. 65. Sadovnikov A.V., Davies C.S., Kruglyak V.V. et al. // Phys. Rev. B. 2017. V. 96. № 6. P. 060401(R). https://doi.org/10.1103/PhysRevB.96.060401
  66. 66. Stigloher J., Taniguchi T., Madami M. et al. // Appl. Phys. Express. 2018. V. 11. № 5. Article No. 053002. https://doi.org/10.7567/APEX.11.053002
  67. 67. Gruszecki P., Krawczyk M. // Phys. Rev. B. 2018. V. 97. № 9. P. 094424. https://doi.org/10.1103/PhysRevB.97.094424
  68. 68. Balynsky M., Kozhevnikov A., Khivintsev Y. et al. // J. Appl. Phys. 2017. V. 121. № 2. Article No. 024504. https://doi.org/10.1063/1.4973115
  69. 69. Balinskiy M., Gutierrez D., Chiang H. et al. // AIP Advances. 2017. V. 7. № 5. P. 056633. http://dx.doi.org/10.1063/1.4974526
  70. 70. Дудко Г.М., Кожевников А.В., Хивинцев Ю.В. и др. // РЭ. 2018. Т. 63. № 10. С. 1105. https://doi.org/10.1134/S0033849418100091
  71. 71. Хивинцев Ю.В., Кожевников А.В., Сахаров В.К. и др. // ЖТФ. 2019. Т. 89. № 11. С. 1712. https://doi.org/10.21883/JTF.2019.11.48333.118-19
  72. 72. Bашковский А.В., Стальмахов А.В., Шахназарян Д.Г. // Изв. вузов. Физика. 1988. Т. 31. № 11. С. 67.
  73. 73. Annenkov A.Yu., Gerus S.V., Lock E.H. // Euro Phys. Lett. 2018. V. 123. № 4. Article No. 44003. https://doi.org/10.1209/0295-5075/123/44003
  74. 74. Demidov V.E., Demokritov S.O., Birt D. et al. // Phys. Rev. B. 2009. V. 80. № 1. P. 014429. https://doi.org/10.1103/PhysRevB.80.014429
  75. 75. Schneider T., Serga A.A., Chumak A.V. et al. // Phys. Rev. Lett. 2010. V. 104. № 19. P. 197203. https://doi.org/10.1103/PhysRevLett.104.197203
  76. 76. Davies C.S., Sadovnikov A.V., Grishin S.V. et al. // Appl. Phys. Lett. 2015. V. 107. № 16. Article No. 162401. https://doi.org/10.1063/1.4933263
  77. 77. Gieniusz R., Ulrichs H., Bessonov V.D. et al. // Appl. Phys. Lett. 2013. V. 102. № 10. Article No. 102409. https://doi.org/10.1063/1.4795293
  78. 78. Madami M., Khivintsev Y., Gubbiotti G. et al. // Appl. Phys. Lett. 2018. V. 113. № 15. Article No. 152403. https://doi.org/10.1063/1.5050347
  79. 79. Bao W., Wang Z., Cao Y., Yan P. // Phys. Rev. B. 2020. V. 102. № 1. Article No. 014423. https://doi.org/1103/PhysRevB.102.014423
  80. 80. Shiota Y., Funada S., Hisatomi R. et al. // Appl. Phys. Lett. 2020. V. 116. № 19. Article No. 192411. https://doi.org/10.1063/5.0010410
  81. 81. Гуляев Ю.В., Никитов С.А., Животовский Л.В. и др. // Письма в ЖЭТФ. 2003. Т. 77. № 10. С. 670.
  82. 82. Kryshtal R.G., Medved A.V. // Appl. Phys. Lett. 2012. V. 100. № 19. Article No. 192410. https://doi.org/10.1063/1.4714507
  83. 83. Frey P., Nikitin A.A., Bozhko D.A. et al. // Commun. Phys. 2020. V. 3. Article No. 17. https://doi.org/10.1038/s42005-020-0281-y
  84. 84. Высоцкий С.Л., Хивинцев Ю.В., Филимонов Ю.А. и др. // Письма в ЖТФ. 2015. Т. 41. № 22. С. 66.
  85. 85. Vysotskii S., Dudko G., Sakharov V. et al. // Acta Physica Polonica A. 2018. V. 133. № 3. P. 508. https://doi.org/10.12693/APhysPolA.133.508
  86. 86. Ustinov A.B., Drozdovskii A.V., Nikitin A.A. et al. // Commun Phys. 2019. V. 2. Article No. 137. https://doi.org/10.1038/s42005-019-0240-7
  87. 87. Nikitin Al.A., Nikitin A.A., Kondrashov A.V. et al. // J. Appl. Phys. 2017. V. 122. № 15. Article No. 153903. https://doi.org/10.1063/1.5000806
  88. 88. Sadovnikov A.V., Beginin E.N., Odincov S.A. et al. // Appl. Phys. Lett. 2016. V. 108. № 17. Article No. 172411. https://doi.org/10.1063/1.4948381
  89. 89. Silvani R., Kostylev M., Adeyeye A.O., Gubbiotti G. // J. Magn. Magn. Mater. 2018. V. 450. P. 51. https://doi.org/10.1016/j.jmmm.2017.03.046
  90. 90. Андреев А.С., Гуляев Ю.В., Зильберман П.Е. и др. // ЖЭТФ. 1984. Т. 86. № 3. С. 1005.
  91. 91. Kalinikos B.A., Slavin A.N. // J. Phys. C: Sol. State Phys. 1986. V. 19. № 35. P. 7013. https://doi.org/10.1088/0022-3719/19/35/014
  92. 92. Высоцкий С.Л., Казаков Г.Т., Маряхин А.В. и др. // Письма в ЖЭТФ. 1995. Т. 61. № 8. C. 673.
  93. 93. Sakharov V.K., Beginin E.N., Khivintsev Y.V. et al. // Appl. Phys. Lett. 2020. V. 117. № 2. Article No. 022403. https://doi.org/10.1063/5.0013150
  94. 94. Гуляев Ю.В., Зильберман П.Е. // Изв. вузов. Физика. 1988. Т. 31. № 11. С. 6.
  95. 95. Nikitov S., Filimonov Y., Vysotsky S. et al. // Proc. 2012 IEEE Int. Ultrasonic Symp. Dresden. 7-10 Oct. N.Y.: IEEE, 2012. P. 1240. https://doi.org/10.1109/ULTSYM.2012.0309
  96. 96. Litvinenko A.N., Sadovnikov A.V., Tikhonov V.V., Nikitov S.A. // IEEE Magn. Lett. 2015. V. 6. Article No. 3200204. https://doi.org/10.1109/LMAG.2015.2494008
  97. 97. Graczyk P., Kłos J., Krawczyk M. // Phys. Rev. B. 95. 2017. № 10. Article No. 104425. https://doi.org/10.1103/PhysRevB.95.104425
  98. 98. Ползикова Н.И., Алексеев С.Г., Лузанов В.А., Раевский А.О. // ФТТ. 2018. Т. 60. № 11. С. 2170. http://dx.doi.org/10.21883/FTT.2018.11.46659.17NN
  99. 99. Latcham O.S., Gusieva Y.I., Shytov A.V. et al. // Appl. Phys. Lett. 2019. V. 115. № 8. Article No. 082403. https://doi.org/10.1063/1.5115387
  100. 100. Alekseev S.G., Dizhur S.E., Polzikova N.I. et al. // Appl. Phys. Lett. 2020. V. 117. № 7. Article No. 072408. https://doi.org/10.1063/5.0022267
  101. 101. An K., Litvinenko A.N., Kohno R. et al. // Phys. Rev. B. 2020. V. 101. № 6. Article No. 060407(R). https://doi.org/10.1103/PhysRevB.101.060407
  102. 102. Бухараев А.А., Звездин А.К., Пятаков А.П., Фетисов Ю.К. // Успехи физ. наук. 2018. Т. 188. № 12. С. 1288. https://doi.org/10.3367/UFNr.2018.01.038279
  103. 103. Rana B., Otani Y.C. // Commun. Physics. 2019. V. 2. P. 90. https://doi.org/10.1038/s42005-019-0189-6
  104. 104. Wang Q., Chumak A.V., Jin L. et al. // Phys. Rev. B. 2017. V. 95. № 13. Article No. 134433. https://doi.org/10.1103/PhysRevB.95.134433
  105. 105. Zhang X., Liu T., Flatté M.E., Tang H.X. // Phys. Rev. Lett. 2014. М. 113. № 3. Article No. 037202.
  106. 106. Krivoruchko V.N., Savchenko A.S., Kruglyak V.V. // Phys. Rev. B. 2018. V. 98. № 2. Article No. 024427.
  107. 107. Rana B., Fukuma Y., Miura K. et al. // Appl. Phys. Lett. 2017. V. 111. № 5. Article No. 052404. https://doi.org/10.1063/1.4990724
  108. 108. Sadovnikov A.V., Grachev A.A., Sheshukova S.E. et al. // Phys. Rev. Lett. 2018. V. 120. № 25. Article No. 257203. https://doi.org/10.1103/PhysRevLett.120.257203
  109. 109. Grachev A.A., Sheshukova S.E., Nikitov S.A., Sadovnikov A.V. // J. Magn. Magn. Mater. 2020. V. 515. Artcile No. 167302. https://doi.org/10.1016/j.jmmm.2020.167302
  110. 110. Brandl F., Franke K.J.A., Lahtinen T.H.E. et al. // Sol. State Commun. 2014. V. 198. P. 13, 198, 13-17 (2014). https://doi.org/10.1016/j.ssc.2013.12.019
  111. 111. Bысоцкий С.Л., Хивинцев Ю.В., Сахаров В.К., Филимонов Ю.А. // ЖТФ. 2019. Т. 89. № 7. С. 1044. https://doi.org/10.21883/JTF.2019.07.47796.366-18
  112. 112. Казаков Г.Т., Кац М.Л., Сухарев А.Г., Филимонов Ю.А. // ЖТФ. 1992. Т. 62. № 11. С. 115.
  113. 113. Vogel M., Chumak A.V., Waller E.H. et al. // Nature Phys. 2015. V. 11. № 6. P. 487. https://doi.org/10.1038/nphys3325
  114. 114. Dzyapko O., Borisenko I.V., Demidov V.E. et al. // Appl. Phys. Lett. 2016. V. 109. № 23. Article No. 232407. https://doi.org/10.1063/1.4971829
  115. 115. Vogel M., Aßmann R., Pirro P. et al. // Science Reports. 2018. V. 8. Article No. 11099. https://doi.org/10.1038/s41598-018-29191-2
  116. 116. Гуляев Ю.В., Зильберман П.Е. // РЭ. 1978. Т. 23. № 5. С. 897.
  117. 117. Nikulin Y.V., Seleznev M.E., Khivintsev Y.V. et al. // ФТП. 2020. Т. 54. № 12. С. 1401.
  118. 118. Sinova J., Valenzuela S.O., Wunderlich J. et al. // Rev. Mod. Phys. 2015. V. 87. № 4. P. 1213. https://doi.org/10.1103/RevModPhys.87.1213
  119. 119. Althammer M. // J. Phys. D: Appl. Phys. 2018. V. 51. № 31. Article No. 313001. https://doi.org/10.1088/1361-6463/aaca89
  120. 120. Еvelt M., Demidov V.E., Bessonov V. et al. // Appl. Phys. Lett. 2016. V. 108. № 17. Article No. 172406. https://doi.org/10.1063/1.4948252
  121. 121. Aнфиногенов В.Б., Вербицкая Т.Н., Гуляев Ю.В. и др. // Письма в ЖТФ. 1986. Т. 12. № 15. С. 938. Sov. Tech. Phys. Lett. 12, 389 (1986).
  122. 122. Fetisov Y.K., Srinivasan G. // Appl. Phys. Lett. 2005. V. 87. № 10. P. 103502. https://doi.org/10.1063/1.2037860
  123. 123. Морозова М.А., Шараевский Ю.П., Никитов С.А. // РЭ. 2014. Т. 59. № 5. С. 510.
  124. 124. Устинова И.А., Никитин А.А., Устинов А.Б. // ЖТФ. 2016. Т. 86. № 3. С. 155. http://journals.ioffe.ru/articles/42927
  125. 125. Sadovnikov A.V., Beginin E.N., Bublikov K.V. et al. // J. Appl. Phys. 2015. V. 118. № 20. Article No. 203906. https://doi.org/10.1063/1.4936320
  126. 126. Sadovnikov A.V., Grachev A.A., Beginin E.N. et al. // Phys. Rev. Appl. 2017. V. 7. № 1. Article No. 014013. https://doi.org/10.1103/PhysRevApplied.7.014013
  127. 127. Aнфиногенов В.Б., Гуляев Ю.В., Зильберман П.Е. и др. // Письма в ЖТФ. 1989. Т. 15. № 14. С. 24.
  128. 128. Гуляев Ю.В., Огрин Ю.Ф., Ползикова Н.И., Раевский А.О. // Письма в ЖЭТФ. 1997. Т. 66. № 1. С. 50.
  129. 129. Dobrovolskiy O.V., Sachser R., Brächer T. et al. // Nature Phys. 2019. V. 15. № 5. P. 477. https://doi.org/10.1038/s41567-019-0428-5101
  130. 130. Хивинцев Ю.В., Дудко Г.М., Сахаров В.К. и др. // ФТТ. 2019. Т. 61. № 9. С. 1664. https://doi.org/10.21883/FTT.2019.09.48108.15N
  131. 131. Ishibashi M., Shiota Y., Li T. et al. // Science Advanced. 2020. V. 6. № 7. Article No. eaaz6931. https://doi.org/10.1126/sciadv.aaz6931
  132. 132. Au Y., Dvornik M., Dmytriiev O., Kruglyak V.V. // Appl. Phys. Lett. 2012. V. 100. № 17. Article No. 172408. https://doi.org/10.1063/1.4705289
  133. 133. Kozhevnikov A., Gertz F., Dudko G. et al. // Appl. Phys. Lett. 2015. V. 106. № 14. Article No. 142409.
  134. 134. Gutierrez D., Chiang H., Bhowmick T. et al. // J. Magn. Magn. Mater. 2017. V. 428. P. 348. https://doi.org/10.1016/j.jmmm.2016.12.022.
  135. 135. Львов В.С. Нелинейные спиновые волны. M.: Наука, 1987.
  136. 136. Demokritov S.O., Demidov V.E., Dzyapko O. et al. // Nature. 2006. V. 443. № 7110. P. 430. https://doi.org/10.1038/nature05117
  137. 137. Bozhko D.A., Kreil A.J.E., Yu H. et al. // Nature Commun. 2019. V. 10. Article No. 2460. https://doi.org/10.1038/s41467-019-10118-y
  138. 138. Borisenko I.V., Divinskiy B., Demidov V.E. et al. // Nature Commun. 2020. V. 11. Article No. 1691. https://doi.org/10.1038/s41467-020-15468-6
  139. 139. Устинов А.Б., Калиникос Б.А., Srinivasan G. // ЖТФ. 2014. Т. 84. № 9. С. 146.
  140. 140. Sadovnikov A.V., Odintsov S.A., Beginin E.N. et al. // Phys. Rev. B. 2017. V. 96. № 14. Article No. 144428.
  141. 141. Садовников А.В., Одинцов С.А., Бегинин Е.Н. и др. // Письма в ЖЭТФ. Т. 107. № 1. С. 29. https://doi.org/10.1134/S0021364018010113
  142. 142. Кожевников А.В., Хивинцев Ю.В., Сахаров В.К. и др. // Изв. вузов. Прикл. нелин. динамика. 2019. Т. 27. № 3. С. 9. https://doi.org/10.18500/0869-6632-2019-27-3-9-32
  143. 143. Кожевников А.В., Дудко Г.М., Хивинцев Ю.В. и др. // Изв. вузов. Прикл. нелин. динамика. 2020. Т. 28. № 2. С. 168. https://doi.org/10.18500/0869-6632-2020-28-2-168-185
  144. 144. Высоцкий С.Л., Павлов Е.С., Кожевников А.В. и др. // ЖТФ. 2019. Т. 89. № 11. С. 1719. https://doi.org/10.21883/JTF.2019.11.48334.132-19
  145. 145. Chumak A.V., Serga A.A., Hillebrands B. // Nature Commun. 2014. V. 5. Article No. 4700.
  146. 146. Sandweg C.W., Kajiwara Y., Chumak A.V. et al. // Phys. Rev. Lett. 2011. V. 106. № 26. Article No. 216601. https://doi.org/10.1103/PhysRevLett.106.216601
  147. 147. Kurebayashi Н., Dzyapko O., Demidov V.E. et al. // Nature Mater. 2011. V. 10. P. 660. https://doi.org/10.1038/NMAT3053
  148. 148. Manuilov S.A., Du C.H., Adur R. et al. // Appl. Phys. Lett.2015. V. 107. № 4. Article No. 042405. https://doi.org/10.1063/1.4927451
  149. 149. Noack T.B., Vasyuchka V.I., Bozhko D.A. et al. // Phys. Stat. Sol. B. 2019. V. 256. № 9. Article No. 1900121. https://doi.org/10.1002/pssb.201900121
  150. 150. Verba R., Carpentieri M., Finocchio G. et al. // Appl. Phys. Lett. 2018. V. 112. № 4. Article No. 042402. https://doi.org/10.1063/1.5019357
  151. 151. Macia F., Kent A.D., Hoppensteadt F.C. // Nano-technology. 2011. V. 22. № 9. Article No. 095301. https://doi.org/10.1088/0957-4484/22/9/095301
  152. 152. Nikonov D.E., Csaba G., Porod W. et al. // IEEE J. Exploratory Solid-State Computational Devices and Circuits. 2015. V. 1. P. 85. https://doi.org/10.1109/JXCDC.2015.2504049
  153. 153. Grollier J., Querlioz D., Stiles M.D. // Proc. IEEE. 2016. V. 104. № 10. P. 2024. https://doi.org/10.1109/JPROC.2016.2597152
  154. 154. Romera M., Talatchia P., Tsunegi S. et al. // Nature. 2018. V. 563. № 7730. P. 230. https://doi.org/10.1038/s41586-018-0632-y
  155. 155. Iwakiri S., Sugimoto S., Niimi Y. et al. // Appl. Phys. Lett. 2020. V. 117. № 2. Article No. 022406. https://doi.org/10.1063/5.0013102
  156. 156. Садовников А.В., Грачев А.А., Одинцов С.А. и др. // Письма в ЖЭТФ. 2018. Т. 108. № 5. С. 332. https://doi.org/10.1134/S0370274X1817006X
  157. 157. Wang Q., Kewenig M., Schneider M. et al. // Nature Electron. 2020. V. 3. № 12. P. 765. https://doi.org/10.1038/s41928-020-00485-6
  158. 158. Brächer T., Pirro P. // J. Appl. Phys. 2018. V. 124. № 15. Article No. 152119. https://doi.org/10.1063/1.5042417
  159. 159. Grollier J., Querlioz D., Camsari K.Y. et al. // Nature Electron. 2020. V. 3. № 7. P. 360 (2020). https://doi.org/10.1038/s41928-019-0360-9
  160. 160. Damon R.W., Eshbach J.R. // J. Phys. Chem. Solids. 1961. V. 19. № 3, 4. P. 308.
  161. 161. Mahmoud A., Vanderveken F., Adelmann C. et al. // AIP Advances. 2020. V. 10. № 3. Article No. 035119. https://doi.org/10.1063/1.5134690
  162. 162. Hahn C., de Loubens G., Klein O. et al. // Phys. Rev. B. 2013. V. 87. № 17. Article No. 174417. https://doi.org/10.1103/PhysRevB.87.174417
  163. 163. Dubs C., Surzhenko O., Linke R. et al. // J. Phys. D: Appl. Phys. 2017. V. 50. № 20. Article No. 204005. https://doi.org/10.1088/1361-6463/aa6b1c
  164. 164. Maendl S., Stasinopoulos I., Grundler D. // Appl. Phys. Lett. 2017. V. 111. № 1. Article No. 012403. https://doi.org/10.1063/1.4991520
  165. 165. Dubs C., Surzhenko O., Thomas R. et al. // Phys. Rev. Mater. 2020. V. 4. № 2. Article No. 024416. https://doi.org/10.1103/PhysRevMaterials.4.024416[
  166. 166. Ding J., Liu T., Chang H., Wu M. // IEEE Magn. Lett. 2020. V. 11. № 1. Article No. 5502305. https://doi.org/10.1109/LMAG.2020.2989687
  167. 167. Liu T., Chang H., Vlaminck V. et al. // J. Appl. Phys. 2014. V. 115. № 17. Article 17A501. https://doi.org/10.1063/1.4852135
  168. 168. Chang H., Li P., Zhang W. et al. // IEEE Magn. Lett. 2014. V. 5. Article No. 6700104. https://doi.org/10.1109/LMAG.2014.2350958
  169. 169. Sun Y., Song H., Chang Y.-Y. et al. // Appl. Phys. Lett. 2012. V. 101. № 15. Article No. 152405. https://doi.org/10.1063/1.4759039
  170. 170. Li S., Zhang W., Ding J. et al. // Nanoscale. 2016. V. 8. № 1. P. 388. https://doi.org/10.1039/c5nr06808h
  171. 171. Zhu N., Chang H., Franson A. et al. // Appl. Phys. Lett. 2017. V. 110. № 25. Article No. 252401. https://doi.org/10.1063/1.4986474
  172. 172. Manuilov S.A., Grishin A.M. // J. Appl. Phys. 2010. V. 108. № 1. Article No. 013902. https://doi.org/10.1063/1.3446840
  173. 173. d’Allivy Kelly O., Anane A., Bernard R. et al. // Appl. Phys. Lett. 2013. V. 103. № 8. Article No. 082408. https://doi.org/10.1063/1.4819157
  174. 174. Onbasli M.C., Kehlberger A., Kim D.H. et al. // APL Mater. 2014. V. 2. № 10. Article No. 106102. https://doi.org/10.1063/1.4896936
  175. 175. Sokolov N.S., Fedorov V.V., Korovin A.M. et al. // J. Appl. Phys. 2016. V. 119. № 2. Article No. 023903. https://doi.org/10.1063/1.4939678
  176. 176. Hauser C., Richter T., Homonnay N. et al. // Scientific Reports. 2016. V. 6. Article No. 20827. https://doi.org/10.1038/srep20827
  177. 177. Krysztofik A., Coy L. E., Kuświk P. et al. // Appl. Phys. Lett. 2017. V. 111. № 19. Article No. 192404. https://doi.org/10.1063/1.5002004
  178. 178. Krysztofik A., Głowinski H., Kuswik P. et al. // J. Phys. D: Appl. Phys. 2017. V. 50. № 23. Article No. 235004.
  179. 179. Lutsev L.V., Korovin A.M., Bursian V.E. et al. // Appl. Phys. Lett. 2016. V. 108. № 18. Article No. 182402. https://doi.org/10.1063/1.4948304
  180. 180. Lutsev L.V., Korovin A.M., Suturin S.M. et al. // J. Phys. D: Appl. Phys. 2020. V. 53. № 26. Article No. 265003. https://doi.org/10.1088/1361-6463/ab7ca7
  181. 181. Stognij A.I., Tokarev V.V., Mitin Yu.N. // Proc. Mater. Research Soc. Symp. 1992. V. 236. P. 331. https://doi.org/10.1557/PROC-236-331
  182. 182. Хивинцев Ю.В., Сахаров В.К., Высоцкий С.Л. и др. // ЖТФ. 2018. Т. 88. № 7. С. 1060. https://doi.org/10.21883/JTF.2018.07.46178.2448
  183. 183. Высоцкий С.Л., Хивинцев Ю.В., Кожевников А.В. и др. // РЭ. 2019. Т. 64. № 12. С. 1202.
  184. 184. Саланский Н.М., Ерухимов М.Ш. Физические свойства и применение тонких магнитных пленок. Новосибирск: Наука, 1973.
  185. 185. Yao S., Sato T., Kaneko K. et al. // Jap. J. Appl. Phys. 2014. V. 53. № 5S1. Article No. 05FB17. https://doi.org/10.7567/JJAP.53.05FB17
  186. 186. Lucas I., Jiménez-Cavero P., Vila-Fungueirino J.M. et al. // Phys. Rev. Mater. 2017. V. 1. № 7. Article No. 074407. https://doi.org/10.1103/PhysRevMaterials.1.074407
  187. 187. Buhay H., Adam J.D., Daniel M.R. et al. // IEEE Trans. 1995. V. MAG-31. № 6. P. 3832. https://doi.org/10.1109/20.489787
  188. 188. Chen Z., Harris V.G. // J. Appl. Phys. 2012. V. 112. № 8. Article No. 081101. https://doi.org/10.1063/1.4739219
  189. 189. Csaba G., Papp A., Porod W. // J. Appl. Phys. 2014. V. 115. № 17. Article No. 17C741. https://doi.org/10.1063/1.4868921
  190. 190. de Gasperis P., Miccoli G., di Gregorio C. // Electronics Lett. 1986. V. 22. № 20. P. 1065. https://doi.org/10.1049/el:19860730
  191. 191. Seeds A.J., Williams K.J. // J. Lightwave Technology. 2006. V. 24. № 12. P. 4628. https://doi.org/10.1109/JLT.2006.885787
  192. 192. Capmany J., Novak D. // Nature Photonics. 2007. V. 1. № 6. P. 319. https://doi.org/10.1038/nphoton.2007.89
  193. 193. Yao J. // J. Lightwave Technology. 2009. V. 27. № 3. P. 314. https://doi.org/10.1109/JLT.2008.2009551
  194. 194. Yao J. // IEEE Microwave Magaz. 2015. V. 1. № 8. P. 46. https://doi.org/10.1109/MMM.2015.2441594
  195. 195. Ustinov A.B., Kondrashov A.V., Nikitin A.A. et al. // J. Phys.: Conf. Ser. 2019. V. 1326. № 1. P. 012015. https://doi.org/10.1088/1742-6596/1326/1/012015
  196. 196. Belkin M.E., Loparev A.V., Semenova Y. et al. // Microwave and Optical Technology Lett. 2011. V. 53. P. 2474. https://doi.org/10.1002/mop.26304
  197. 197. Eliyahu D., Maleki L. // Dig. 2003 IEEE/MTT-S Int. Symp. Digest, Philadelphia. 08-13 Jun. N.Y.: IEEE, 2003. V. 3. P. 2185.
  198. 198. Raut N.K., Miller J., Sharping J. // J. Inst. of Science and Technology. 2019. V. 24. № 1. P. 26. http://doi.org/10.3126/jist.v24i1.24625
  199. 199. Ustinov A.B., Nikitin A.A., Kalinikos B.A. // IEEE Magnetics Lett. 2015. V. 6. № 35. Article No. 3500704. http://doi.org/10.1109/LMAG.2015.2487238
  200. 200. Csaba G., Papp A., Porod W. // Phys. Lett A. 2017. V. 81. № 17. P. 1471. https://doi.org/10.1016/j.physleta.2017.02.042
  201. 201. Breitkreutz-von Gamm S., Papp A., Egel E. et al. // IEEE Magn. Lett. 2017. V. 8. Article No. 3100804. https://doi.org/10.1109/LMAG.2016.2618779
  202. 202. Egel E., Csaba G., Dietz A. et al. // AIP Advances. 2018. V. 8. № 5. Article No. 056001. https://doi.org/10.1063/1.5007435
  203. 203. Papp A., Porod W., Csurgay A., Csaba G. // Scientific Reports. 2017. V. 7. Article No. 9245. https://doi.org/10.1038/s41598-017-09485-7
  204. 204. Stognij A.I., Lutsev L.V., Bursian V.E., Novitskii N.N. // J. Appl. Phys. 2015. V. 118. № 2. Article No. 023905. https://doi.org/10.1063/1.4926475
  205. 205. Stognij A., Lutsev L., Novitskii N. et al. // J. Phys. D: Appl. Phys. 2015. V. 48. № 48. Article No. 485002. https://doi.org/10.1088/0022-3727/48/48/485002
  206. 206. Высоцкий С.Л., Никулин Ю.В., Кожевников А.В. и др. // ЖТФ. 2020. Т. 90. № 7. С. 1221 (2020). https://doi.org/10.21883/JTF.2020.07.49460.363-19
  207. 207. Lutsev L.V., Stognij A.I., Novitskii N.N. et al. // J. Phys. D: Appl. Phys. 2018. V. 51. № 35. Article No. 355002. https://doi.org/10.1088/1361-6463/aad41b
  208. 208. Sakharov V.K., Khivintsev Y.V., Vysotskii S.L. et al. // IEEE Magn. Lett. 2017. V. 8. Article No. 3704105. https://doi.org/10.1109/LMAG.2017.2659638
  209. 209. Sadovnikov A.V., Beginin E.N., Sheshukova S.E. et al. // Phys. Rev. B. 2019. V. 99. Article No. 054424. https://doi.org/10.1103/PhysRevB.99.054424
  210. 210. Grassi M., Geilen M., Louis D. et al. // Phys. Rev. Appl. 2020. V. 14. № 2. Article No. 024047. https://doi.org/10.1103/PhysRevApplied.14.024047
  211. 211. Cахаров В.К., Хивинцев Ю.В., Высоцкий С.Л. и др. // Изв. вузов. Прикл. нелин. динамика. 2017. Т. 25. № 1. С. 35. https://doi.org/10.18500/0869-6632-2017-25-1-35-51
  212. 212. Fan Y., Quarterman P., Finley J. et al. // Phys. Rev. Appl. 2020. V. 13. № 6. Article No. 061002. https://doi.org/10.1103/PhysRevApplied.13.061002
  213. 213. Balinskiy M., Ojha S., Chiang H. et al. // J. Appl. Phys. 2017. V. 122. № 12. Article No. 123904. https://doi.org/10.1063/1.4990565
  214. 214. Soumah L., Beaulieu N., Qassym L. et al. // Nature Commun. 2018. V. 9. Article No. 3355. https://doi.org/10.1038/s41467-018-05732-1
  215. 215. Collet M., de Milly X., d’Allivy Kelly O. et al. // Nature Commun. 2016. V. 7. Article No. 10377. http://doi.org/10.1038/ncomms10377
  216. 216. Demidov V.E., Urazhdin S., de Loubens G. et al. // Phys. Reports. 2017. V. 673. P. 1. http://doi.org/10.1016/j.physrep.2017.01.001
  217. 217. Demidov V.E., Urazhdin S., Anane A. et al. // J. Appl. Phys. 2020. V. 127. № 17. Article No. 170901. http://doi.org/10.1063/5.0007095
  218. 218. Звездин А.К., Котов В.А. Магнитооптика тонких пленок. М.: Наука, 1988.
  219. 219. Aldosary M., Li J., Tang C. et al. // Appl. Phys. Lett. 2016. V. 108. № 24. Article No. 242401. http://doi.org/10.1063/1.4953454
  220. 220. Li J., Xu Y., Aldosary M. et al. // Nature Commun. 2016. V. 7. Article No. 10858. http://doi.org/10.1038/ncomms10858
  221. 221. Chang H., Liu T., Reifsnyder Hickey D. et al. // APL Mater. 2017. V. 5. № 12. Article No. 126104. http://doi.org/10.1063/1.5013626
  222. 222. Ciubotaru F., Devolder T., Manfrini M. et al. // Appl. Phys. Lett. 2016. V. 109. № 1. Article No. 012403. http://doi.org/10.1063/1.4955030
  223. 223. Rousseau O., Rana B., Anami R. et al. // Scientific Reports. 2015. V. 5. Article No. 9873. http://doi.org/10.1038/srep09873
  224. 224. Sekiguchi K., Chiba D., Tachizaki T. // Japan. J. Appl. Phys. 2018. V. 57. № 9. Article No. 0902B4. http://doi.org/10.7567/JJAP.57.0902B4
  225. 225. Sato N., Lee S.-W., Lee K.-J., Sekiguchi K. // J. Phys. D: Appl. Phys. 2017. V. 50. № 9. Article No. 094004. http://doi.org/10.1088/1361-6463/aa59d2
  226. 226. Stückler T., Liu C., Liu T. et al. // Phys. Rev. B. 2017. V. 96. № 14. Article No. 144430. https://doi.org/10.1103/PhysRevB.96.144430
  227. 227. Stückler T., Liu C., Yu H. et al. // J. Magn. Magn. Mater. 2018. V. 450. P. 13. http://doi.org/10.1016/j.jmmm.2017.09.074
  228. 228. Pan S., Seki T., Takanashi K., Barman A. // Phys. Rev. Appl. 2017. V. 7. № 6. Article No. 064012. http://doi.org/10.1103/PhysRevApplied.7.064012
  229. 229. Zhou Z., Peng B., Zhu M., Liu M. // J. Advanced Dielectrics. 2016. V. 6. № 2. Article No. 1630005. http://doi.org/10.1142/S2010135X1630005X
  230. 230. Ziętek S., Ogrodnik P., Skowroński W. et al. // Appl. Phys. Lett. 2016. V. 109. № 7. Article No. 072406. http://doi.org/10.1063/1.4961124
  231. 231. Balinskiy M., Chavez A.C., Barra A. et al. // Scientific Reports. 2018. V. 8. Article No. 10867. http://doi.org/10.1038/s41598-018-28878-w
  232. 232. Cherepov S., Amiri P.K., Alzate J.G. et al. // Appl. Phys. Lett. 2014. V. 104. № 8. Article No. 082403. http://doi.org/10.1063/1.4865916
  233. 233. Wang D., Nordman C., Qian Z. et al. // J. Appl. Phys. 2005. V. 97. № 10. Article No. 10C906. http://doi.org/10.1063/1.1848355
  234. 234. Chumak O.M., Nabialek A., Zuberek R. et al. // IEEE Trans. 2017. V. MAG-53. № 11. Article No. 2501906. https://doi.org/10.1109/TMAG.2017.2700790
  235. 235. Hämäläinen S.J., Madami M., Qin H. et al. // Nature Commun. 2018. V. 9. Article No. 4853. https://doi.org/10.1038/s41467-018-07372-x
  236. 236. Peng R.-C., Hu J.-M., Momeni K. et al. // Scientific Reports. 2016. V. 6. Article No. 27561. https://doi.org/10.1038/srep27561
  237. 237. Rana B., Otani Y. // Phys. Rev. Appl. 2018. V. 9. № 1. Article No. 014033. https://doi.org/10.1103/PhysRevApplied.9.014033
  238. 238. Demidov V.E., Urazhdin S., Rinkevich A.B. et al. // Appl. Phys. Lett. 2014. V. 104. № 15. Article No. 152402. https://doi.org/10.1063/1.4871519
  239. 239. Fulara H., Zahedinejad M., Khymyn R. et al. // Science Advances. 2019. V. 5. № 9. Article No. eaax8467. https://doi.org/10.1126/sciadv.aax8467
  240. 240. Talmelli G., Ciubotaru F., Garello K. et al. // Phys. Rev. Appl. 2018. V. 10. № 4. Article No. 044060. https://doi.org/10.1103/PhysRevApplied.10.044060
  241. 241. Brächer T., Fabre M., Meyer T. et al. // Nano Lett. 2017. V. 17. № 12. P. 7234. https://doi.org/10.1021/acs.nanolett.7b02458
  242. 242. Arif M., Zhang Z., Tang J. et al. // J. Magn. Magn. Mater. 2020. V. 499. Article No. 166072. https://doi.org/10.1016/j.jmmm.2019.166072
  243. 243. Bhaskar U.K., Talmelli G., Ciubotaru F. et al. // J. Appl. Phys. 2020. V. 127. № 3. Article No. 033902. https://doi.org/10.1063/1.5125751
  244. 244. Bысоцкий С.Л., Казаков Г.Т., Нам Б.П. и др. // ФТТ. 1992. Т. 34. № 5. С. 1376.
  245. 245. Mallick S., Mondal S., Seki T. et al. // Phys. Rev. Appl. 2019. V. 12. № 1. Article No. 014043. https://doi.org/10.1103/PhysRevApplied.12.014043
  246. 246. Temiryazev A. // Diamond and Related Mater. 2014. V. 48. P. 60. https://doi.org/10.1016/j.diamond.2014.07.001
  247. 247. Albisetti E., Petti D., Sala G. et al. // Сommun. Phys. 2018. V. 1. Article No. 56. https://doi.org/10.1038/s42005-018-0056-x
  248. 248. Winter J.M. // Phys. Rev. 1961. V. 124. № 2. P. 452.
  249. 249. Sheshukova S.E., Beginin E.N., Sadovnikov A.V. et al. // IEEE Magn. Lett. 2014. V. 5. Article No. 3700204. https://doi.org/10.1109/LMAG.2014.2365431
  250. 250. Gertz F., Kozhevnikov A., Filimonov Y., Khitun A. // IEEE Trans. 2015. V. MAG-51. № 4. Article No. 4992905. https://doi.org/10.1109/TMAG.2014.2362723
  251. 251. Kanazawa N., Goto T., Sekiguchi K. et al. // Scientific Reports. 2017. V. 7. Article No. 7898. https://doi.org/10.1038/s41598-017-08114-7
  252. 252. Fischer T., Kewenig M., Bozhko D. A. et al. // Appl. Phys. Lett. 2017. V. 110. № 15. Article No. 152401. https://doi.org/10.1063/1.4979840
  253. 253. Khivintsev Y.V., Kozhevnikov A.V., Dudko G.M. et al. // Phys. Metals and Metallography. 2019. V. 120. № 13. P. 1318. https://doi.org/10.1134/S0031918X1913012X
  254. 254. Сollet M., Gladii O., Evelt M. et al. // Appl. Phys. Lett. 2017. V. 110. № 9. Article No. 092408. https://doi.org/10.1063/1.4976708
  255. 255. Wang Q., Heinz B., Verba R. et al. // Phys. Rev. Lett. 2019. V. 122. № 24. Article No. 247202. https://doi.org/10.1103/PhysRevLett.122.247202
  256. 256. O’Keeffe T.W., Patterson R.W. // J. Appl. Phys. 1978. V. 49. № 9. P. 4886. https://doi.org/10.1063/1.325522
  257. 257. Heinz B., Brächer T., Schneider M. et al. // Nano Lett. 2020. V. 20. № 6. P. 4220. https://doi.org/10.1021/acs.nanolett.0c00657
  258. 258. Beginin E.N., Sadovnikov A.V., Sharaevskaya A.Yu. et al. // Appl. Phys. Lett. 2018. V. 112. № 12. Article No. 122404. https://doi.org/10.1063/1.5023138
  259. 259. Beginin E.N., Kalyabin D.V., Popov P.A. et al. Three-Dimensional Magnonics: Layered Microand Nanostructures / Ed. by G. Gubbuotti. Singapore: Jenny Stanford Publishing, 2019. P. 67.
  260. 260. Попов П.А., Шараевская А.Ю., Калябин Д.В. и др. // РЭ. 2018. Т. 63. № 12. С. 1285. https://doi.org/10.1134/S0033849418120161
  261. 261. Beginin E.N., Sadovnikov A.V., Sakharov V.K. et al. // J. Magn. Magn. Mater. 2019. V. 492. Article No. 165647. https://doi.org/10.1016/j.jmmm.2019.165647
  262. 262. Qin H., Both G.-J., Hämäläinen S.J. et al. // Nature Commun. 2018. V. 9. Article No. 5445. https://doi.org/10.1038/s41467-018-07893-5
  263. 263. Demidov V.E., Kostylev M.P., Rott K. et al. // Appl. Phys. Lett. 2009. V. 95. № 11. Article No. 112509. https://doi.org/10.1063/1.3231875
  264. 264. Vlaminck V., Bailleul M. // Phys. Rev. B. 2010. V. 81. № 1. Article No. 014425. https://doi.org/10.1103/PhysRevB.81.014425
  265. 265. Yu H., d’Allivy Kelly O., Cros V. et al. // Scientific Reports. 2014. V. 4. Article No. 6848. https://doi.org/10.1038/srep06848
  266. 266. Khivintsev Y., Filimonov Y., Nikitov S. // Appl. Phys. Lett. 2015. V. 106. № 5. Article No. 052407. https://doi.org/10.1063/1.4907626
  267. 267. Gruszecki P., Kasprzak M., Serebryannikov A.E. et al. // Scientific Reports. 2016. V. 6. Article No. 22367. https://doi.org/10.1038/srep22367.
  268. 268. Loayza N., Jungfleisch M.B., Hoffmann A. et al. // Phys. Rev. B. 2018. V. 98. № 14. Article No. 144430. https://doi.org/10.1103/PhysRevB.98.144430
  269. 269. Zhang Y., Yu T., Chen J.-l. et al. // J. Magn. Magn. Mater. 2018. V. 450. P. 24. http://dx.doi.org/10.1016/j.jmmm.2017.04.048
  270. 270. Rao Y., Zhang D., Jin L. et al. // J. Magn. Magn. Mater. 2019. V. 490. Article No. 165442. https://doi.org/10.1016/j.jmmm.2019.165442
  271. 271. Chen F., Heimbach T., Liu H. et al. // J. Magn. Magn. Mater. 2018. V. 450. P. 3. https://doi.org/10.1016/j.jmmm.2017.04.045
  272. 272. Shibata K., Kasahara K., Nakayama K. et al. // J. Appl. Phys. 2018. V. 124. № 24. Article No. 243901. https://doi.org/10.1063/1.5068722
  273. 273. Nakayama M., Yamanoi K., Kasai S. et al. // Japan. J. Appl. Phys. 2015. V. 54. № 8. Article No. 083002. https://doi.org/10.7567/JJAP.54.083002
  274. 274. Kasahara M., Nakayama Y., Xiaorui K. et al. // Japan. J. Appl. Phys. 2017. V. 56. № 1. Article No. 010309. https://doi.org/10.7567/JJAP.56.01030
  275. 275. Papp A., Csaba G., Dey H. et al. // Europ. Phys. J. B. 2018. V. 91. Article No. 107. https://doi.org/10.1140/epjb/e2018-80623-x
  276. 276. Au Y., Davison T., Ahmad E. et al. // Appl. Phys. Lett. 2011. V. 98. № 12. Article No. 122506. https://doi.org/10.1063/1.3571444
  277. 277. Schlömann E. // J. Appl. Phys. 1964. V. 35. № 1. P. 159. https://doi.org/10.1063/1.1713058
  278. 278. Träger N., Gruszecki P., Lisiecki F. et al. // Nanoscale. 2020. V. 12. № 33. P. 17238. https://doi.org/10.1039/D0NR02132F
  279. 279. Gieniusz R., Gruszecki P., Krawczyk M. et al. // Scientific Reports. 2017. V. 7. Article No. 8771. https://doi.org/10.1038/s41598-017-06531-2
  280. 280. Дудко Г.М., Кожевников А.В., Сахаров В.К. и др. // Изв. Саратов. ун-та. Новая Серия. Сер. Физика. 2018. Т. 18. № 2. С. 92. https://doi.org/10.18500/1817-3020-2018-18-2-92-102
  281. 281. Yu H., d’Allivy Kelly O., Cros V. et al. // Nature Commun. 2016. V. 7. Article No. 11255. https://doi.org/10.1038/ncomms11255
  282. 282. Chen J., Yu T., Liu C. et al. // Phys. Rev. B. 2019. V. 100. № 10. Article No. 104427. https://doi.org/10.1103/PhysRevB.100.104427
  283. 283. Heimbach F., Stückler T., Yu H. et al. // J. Magn. Magn. Mater. 2018. V. 450. P. 29. https://doi.org/10.1016/j.jmmm.2017.09.062
  284. 284. Che P., Baumgaert K., Kúkol’ová A. et al. // Nature Commun. 2020. V. 11. Article No. 1445. https://doi.org/10.1038/s41467-020-15265-1
  285. 285. Eshbach J.R. // J. Appl. Phys. 1963. V. 34. № 4. P. 1298. https://doi.org/10.1063/1.1729481
  286. 286. Tемирязев А.Г., Тихомирова М.П. // Письма в ЖЭТФ. 1995. Т. 61. № 11. С. 910.
  287. 287. Qin H., Hämäläinen S. J., van Dijken S. // Scientific Reports. 2018. V. 8. Article No. 5755. https://doi.org/10.1038/s41598-018-23933-y
  288. 288. Klingler S., Amin V., Geprägs S. et al. // Phys. Rev. Lett. 2018. V. 120. № 12. Article No. 127201. https://doi.org/10.1103/PhysRevLett.120.127201
  289. 289. Filimonov Yu.A., Kazakov G.T., Visotsky S.L. et al. // J. Magn. Magn. Mater. 1994. V. 131. № 1-2. P. 235. https://doi.org/10.1016/0304-8853 (94)90034-5
  290. 290. Gräfe J., Decker M., Keskinbora K. et al. // arxiv.org/pdf/1707.03664.
  291. 291. Toedt J.-N., Mundowski M., Heltmann D. et al. // Scientific Reports. 2016. V. 6. Article No. 33169. https://doi.org/10.1039/srep33169.
  292. 292. Whitehead N.J., Horsley S.A.R., Philbin T.G., Kruglyak V.V. // Appl. Phys. Lett. 2018. V. 113. № 21. Article No. 212404. https://doi.org/10.1063/1.5049470
  293. 293. Locatelli N., Cros V., Grollier J. // Nature Mater. 2014. V. 13. P. 11. https://doi.org/10.1038/NMAT3823
  294. 294. Chen T., Dumas R.K., Eklund A. et al. // Proc. IEEE. 2016. V. 104. № 10. P. 1919. https://doi.org/10.1109/JPROC.2016.2554518
  295. 295. Ryu J., Lee S., Lee K.-J., Park B.-G. // Advanced Mater. 2020. Article No. 1907148. https://doi.org/10.1002/adma.201907148
  296. 296. Slonczewski J.C. // J. Magn. Magn. Mater. 1996. V. 159. № 1-2. P. L1. https://doi.org/10.1016/0304-8853 (96)00062-5
  297. 297. Berger L. // Phys. Rev. B. 1996. V. 54. № 13. P. 9353. 54 (1996) 9353-9358. https://doi.org/10.1103/PhysRevB.54.9353
  298. 298. Demidov V.E., Urazhdin S., Demokritov S.O. // Nature Mater. 2010. V. 9. P. 984. https://doi.org/10.1038/nmat2882
  299. 299. Madami M., Bonetti S., Consolo G. et al. // Nature Nanotechnol. 2011. V. 6. P. 635. https://doi.org/10.1038/nnano.2011.140
  300. 300. Demidov V.E., Urazhdin S., Liu R. et al. // Nature Commun. 2016. V. 7. Article No. 10446. https://doi.org/10.1038/ncomms10446
  301. 301. Дьяконов М.И., Перель В.И. // Письма в ЖЭТФ. 1971. Т. 13. № 4. С. 206.
  302. 302. Hirsch J.E. // Phys. Rev. Lett. 1999. V. 83. № 9. P. 1834. https://doi.org/10.1103/PhysRevLett.83.1834
  303. 303. Hoffmann A. // IEEE Trans. 2013. V. MAG-49. № 10. P. 5172. https://doi.org/10.1109/TMAG.2013.2262947
  304. 304. Liu R.H., Lim W.L., Urazhdin S. // Phys. Rev. Lett. 2013. V. 110. № 14. Article No. 147601. https://doi.org/10.1103/PhysRevLett.110.147601
  305. 305. Demidov V.E., Ulrichs H., Gurevich S.V. et al. // Nature Commun. 2014. V. 5. Article No. 3179. https://doi.org/10.1038/ncomms4179
  306. 306. Ando K., Takahashi S., Harii K. et al. // Phys. Rev. Lett. 2008. V. 101. № 3. Article No. 036601. https://doi.org/10.1103/PhysRevLett.101.036601
  307. 307. Kajiwara Y., Harii K., Takahashi S. et al. // Nature. 2010. V. 464. № 7286. P. 262. https://doi.org/10.1038/nature08876
  308. 308. Liu L., Pai C.-F., Li Y. et al. // Science. 2012. V. 336. № 6081. P. 555. https://doi.org/10.1126/science.1218197
  309. 309. Li Y., Saglam H., Zhang Z. et al. // R. Phys. Rev. Appl. 2019. V. 11. № 3. Article No. 034047. https://doi.org/10.1103/PhysRevApplied.11.034047
  310. 310. Evelt M., Soumah L., Rinkevich A.B. et al. // Phys. Rev. Appl. 2018. V. 10. № 4. Article No. 041002. https://doi.org/10.1103/PhysRevApplied.10.041002
  311. 311. Dürrenfeld P., Awad A.A., Houshang A. et al. // Nanoscale. 2017. V. 9. № 3. P. 1285. https://doi.org/10.1039/c6nr07903b
  312. 312. Zahedinejad M., Awad A.A., Muralidhar S. // Nature Nanotechnol. 2020. V. 15. № 1. P. 47. https://doi.org/10.1038/s41565-019-0593-9
  313. 313. Demidov V.E., Urazhdin S., Zholud A. et al. // Appl. Phys. Lett. 2014. V. 105. № 17. Article No. 172410. https://doi.org/10.1063/1.4901027]
  314. 314. Divinskiy B., Demidov V.E., Urazhdin S. et al. // Advanced Mater. 2018. V. 30. Article No. 1802837. https://doi.org/10.1002/adma.201802837
  315. 315. Evelt M., Safranski C., Aldosary M. et al. // Scientific Reports. 2018. V. 8. Artile No. 1269. https://doi.org/10.1038/s41598-018-19606-5
  316. 316. Jäckl M., Belotelov V.I., Akimov I.A. et al. // Phys. Rev. X. 2017. V. 7. № 2. Article No. 021009. https://doi.org/10.1103/PhysRevX.7.021009
  317. 317. Chernov A.I., Kozhaev M.A., Savochkin I.V. et al. // Opt. Lett. 2017. V. 42. № 2. P. 279. https://doi.org/10.1364/ol.42.000279
  318. 318. Savochkin I.V., Jäckl M., Belotelov V.I. et al. // Scientific Reports. 2017. V. 7. Article No. 5668. https://doi.org/10.1038/s41598-017-05742-x
  319. 319. Muralidhar S., Awad A.A., Alemán A. et al. // Phys. Rev. B. 2020. V. 101. № 22. Article No. 224423. https://doi.org/10.1103/PhysRevB.101.224423
  320. 320. Казаков Г.Т., Котелянский И.М., Маряхин А.В. и др. // РЭ. 2004. Т. 49. № 5. С. 568.
  321. 321. Albisetti E., Tacchi S., Silvani R. et al. // Advanced Mater. 2020. V. 32. № 9. Article No. 1906439. https://doi.org/10.1002/adma.201906439
  322. 322. Seki S., Garst M., Waizner J. et al. // Nature Commun. 2020. V. 11. Article No. 256. https://doi.org/10.1038/s41467-019-14095-0
  323. 323. Uchida K., Adachi H., Kikuchi D. et al. // Nature Commun. 2015. V. 6. Article No. 5910. https://doi.org/10.1038/ncomms6910
  324. 324. Kolodny S., Yudin D., Iorsh I. // Nanoscale. 2019. V. 11. № 4. P. 2003. https://doi.org/10.1039/C8NR09989H
  325. 325. Garhwal A., Ray K., Arumona A.E. et al. // Optical and Quantum Electronics. 2020. V. 52. Article No. 241. https://doi.org/10.1007/s11082-020-02368-8
  326. 326. Maksymov I.S., Kostylev M. // Phys. E: Low-dim. Syst. and Nanostruct. 69. 2015. P. 253. https://doi.org/10.1016/j.physe.2014.12.027
  327. 327. Wintz S., Tiberkevich V., Weigand M. et al. // Nature Nanotechnol. 2016. V. 11. № 11. P. 948. https://doi.org/10.1038/nnano.2016.117
  328. 328. Sluka V., Schneider T., Gallardo R.A. et al. // Nature Nanotechnol. 2019. V. 14. № 4. P. 328. https://doi.org/10.1038/s41565-019-0383-4
  329. 329. Медников А.М., Попков А.Ф., Анисимкин В.И. и др. // Письма в ЖЭТФ. 1981. Т. 33. № 12. С. 646. http://www.jetpletters.ac.ru/ps/1512/article_23104.shtml
  330. 330. Попков А.Ф. // Микроэлектроника. 1981. Т. 10. № 5. С. 446.
  331. 331. Медников A.M., Никитов С.А., Попков А.Ф. // ФТТ. 1982. Т. 24. № 10. С. 3008.
  332. 332. Kryshtal R.G., Medved A.V. // J. Magn. Magn. Mater. 2015. V. 395. P. 180. https://doi.org/10.1016/j.jmmm.2015.07.086
  333. 333. Kryshtal R.G., Medved A.V. // J. Magn. Magn. Mater. 2017. V. 426. P. 666. https://doi.org/10.1016/j.jmmm.2016.10.148
  334. 334. Kryshtal R.G., Medved A.V. // J. Phys. D: Appl. Phys. 2017. V. 50. № 49. Article No. 495004. https://doi.org/10.1088/1361-6463/aa93ba
  335. 335. Kryshtal R., Medved A. // Ultrasonics. 2019. V. 94. P. 60. https://doi.org/10.1016/j.ultras.2018.12.003
  336. 336. Vogel M., Chumak A.V., Waller E.H. et al. // Nature Phys. 2015. V. 11. № 6. P. 487. https://doi.org/10.1038/nphys3325
  337. 337. Chang C.L., Mieszczak S., Zelent M. еt al. // Phys.Rev. Appl. 2018. V. 10. № 6. Article No. 064051. https://doi.org/10.1103/PhysRevApplied.10.064051
  338. 338. Мясоедов А.Н., Фетисов Ю.К. // ЖТФ. 1989. Т. 59. № 6. С. 133.
  339. 339. Попков А.Ф., Фетисов Ю.К., Островский Н.В. // ЖТФ. 1998. Т. 68. № 5. С. 105.
  340. 340. Fetisov Y.K., Ostrovskaya N.V., Popkov A.F. // J. Appl. Phys. 1996. V. 79. № 8. P. 5730. https://doi.org/10.1063/1.362233
  341. 341. Chumak A.V., Neumann T., Serga A.A. et al. // J. Phys. D: Appl. Phys. 2009. V. 42. № 20. Article No. 205005. https://doi.org/10.1088/0022-3727/42/20/205005
  342. 342. Chumak A.V., Tiberkevich V.S., Karenowska A.D. et al. // Nature Commun. V. 1. № 9. Article No. 141. https://doi.org/10.1038/ncomms1142
  343. 343. Karenowska A.D., Gregg J.F., Tiberkevich V.S. et al. // Phys. Rev. Lett. 2012. V. 108. № 1. Article No. 015505. https://doi.org/10.1103/PhysRevLett.108.015505
  344. 344. Nikitin A.A., Ustinov A.B., Semenov A.A. et al. // Appl. Phys. Lett. 2015. V. 106. № 10. Article No. 102405. https://doi.org/10.1063/1.4914506
  345. 345. Grundler D. // Nature Phys. 11, 438-441 (2015). https://doi.org/10.1038/nphys3349
  346. 346. Topp J., Heitmann D., Kostylev M. P., Grundler D. // Phys. Review Letters 104, 207205 (2010). https://doi.org/10.1103/PhysRevLett.104.207205
  347. 347. Ding J., Kostylev M., Adeyeye A.O. // Phys. Rev. B. 2011. V. 84. № 5. Article No. 054425. https://doi.org/10.1103/PhysRevB.84.054425
  348. 348. Ding J., Adeyeye A.O. // Advanced Functional Mater. 2013. V. 23. № 13. P. 1684. https://doi.org/10.1002/adfm.201201432
  349. 349. Livesey K.L., Ding J., Anderson N.R. et al. // Phys. Rev. B. 2013. V. 87. № 6. Article No. 064424. (2013). https://doi.org/10.1103/PhysRevB.87.064424
  350. 350. Mruczkiewicz M., Krawczyk M., Sakharov V.K. et al. // J. Appl. Phys. 2013. V. 113. № 9. Article No. 093908. https://doi.org/10.1063/1.4793085
  351. 351. Huber R., Krawczyk M., Schwarze T. et al. // Appl. Phys. Lett. 2013. V. 102. № 1. Article No. 012403. https://doi.org/10.1063/1.4773522
  352. 352. Haldar A., Kumar D., Adeyeye A.O. // Nature Nanotechnol. 2016. V. 11. № 5. P. 437. https://doi.org/10.1038/NNANO.2015.332
  353. 353. Klimov A., Tiercelin N., Dusch Y. et al. // Appl. Phys. Lett. 2017. V. 110. № 22. Article No. 222401. https://doi.org/10.1063/1.4983717
  354. 354. Fetisov Y.K., Srinivasan G. // Appl. Phys. Lett. 2006. V. 88. № 14. Article No. 143503. https://doi.org/10.1063/1.2191950
  355. 355. Srinivasan G., Tatarenko A.S., Fetisov Y.K. et al. // Mater. Research Soc. Symp. Proc. 2006. V. 966. Article No. 1401. https://doi.org/10.1557/proc-0966-t14-01
  356. 356. Ustinov A.B., Srinivasan G., Kalinikos B.A. // Appl. Phys. Lett. 2007. V. 90. № 3. Article No. 031913. https://doi.org/10.1063/1.2432953
  357. 357. Zavislyak I.V., Popov M.A., Sreenivasulu G., Srinivasan G. // Appl. Phys. Lett. 2013. V. 102. № 22. Article No. 222407. https://doi.org/10.1063/1.4809580
  358. 358. Устинов А.Б., Фетисов Ю.К., Лебедев С.В., Srinivasan G. // Письма в ЖТФ. 2010. Т. 36. № 4. С. 44. http://journals.ioffe.ru/articles/viewPDF/12317
  359. 359. Petrov V., Bichurin M., Saplev A. // J. Appl. Phys. 2017. V. 121. № 22. Article No. 224103. https://doi.org/10.1063/1.4985069
  360. 360. Shastry S., Srinivasan G., Bichurin M.I. et al. // Phys. Rev. B. 2004. V. 70. № 6. Article No. 064416. https://doi.org/10.1103/PhysRevB.70.064416
  361. 361. Lou B.J., Liu M., Reed D. et al. // Advanced Mater. 2009. V. 21. № 46. P. 4711. https://doi.org/10.1002/adma.200901131
  362. 362. Садовников А.В., Грачев А.А., Бегинин Е.Н. и др. // Письма в ЖЭТФ, 105:6, 347 (2017).
  363. 363. Устинов А.Б., Колков П.И., Никитин А.А. и др. // ЖТФ, 81(6), 75 (2011). http://journals.ioffe.ru/articles/10334
  364. 364. Никитин А.А., Устинов А.Б., Семенов А.А., Калиникос Б.А. // Письма в ЖТФ, 40(7), 1 (2014).http://journals.ioffe.ru/articles/viewPDF/27350
  365. 365. Lee K.-S., Kim S.-K. // J. Appl. Phys. 2008. V. 104. № 5. Article No. 053909.
  366. 366. Klingler S., Pirro P., Brächer T. et al. // Appl. Phys. Lett. 2015. V. 106. № 21. Article No. 212406. https://doi.org/10.1063/1.4921850
  367. 367. Klingler S., Pirro P., Brächer T. et al. // Appl. Phys. Lett. 2014. V. 105. № 15. Article No. 152410 https://doi.org/10.1063/1.4898042
  368. 368. Brächer T., Heussner F., Pirro P. et al. // Scientific Reports. 2016. V. 6. Article No. 28235. https://doi.org/10.1038/srep3823560
  369. 369. Khitun A., Wang K.L. // J. Appl. Phys. 2011. V. 110. № 3. Article No. 034306. https://doi.org/10.1063/1.3609062
  370. 370. Alzate J.G., Upadhyaya P., Lewis M. et al. // Proc. 2012 IEEE/ACM Int. Symp. on Nanoscale Architectures (NANOARCH ‘12). Amsterdam. 04-06 Jul. N.Y.: IEEE, 2012 P. 196. https://doi.org/10.1145/2765491.2765526
  371. 371. Khitun A., Nikonov D.E., Wang K.L. // J. Appl. Phys. 2009. V. 106. № 12. Article No. 123909. https://doi.org/10.1063/1.3267152
  372. 372. Khitun A. // J. Appl. Phys. 2012. V. 111. № 5. Article No. 054307. https://doi.org/10.1063/1.3689011
  373. 373. Khitun A., Wang K.L. // J. Appl. Phys. 2011. V. 110. № 3. Article No. 034306. https://doi.org/10.1063/1.3609062
  374. 374. Khitun A., Bao M., Wang K.L. // IEEE Trans. 2008. V. MAG-44. № 9. P. 2141. https://doi.org/10.1109/tmag.2008.2000812
  375. 375. Sadovnikov A.V., Odintsov S.A., Sheshukova S.E. et al. // IEEE Magnetics Lett. 2018. V. 9. Article No. 3707105. https://doi.org/10.1109/LMAG.2018.2874349
  376. 376. Садовников А.В., Одинцов А.В., Бегинин Е.Н. и др. // Письма в ЖЭТФ. 2018. Т. 107. № 1. С. 29. https://doi.org/10.7868/S0370274X1801006X
  377. 377. Дудко Г.М., Кожевников А.В., Сахаров В.К. и др. // ЖТФ 2022 Т. 92. № 8. С. 1151. https://doi.org/10.21883/JTF.2022.08.52776.79-22
  378. 378. Balynskiy M., Chiang H., Gutierrez D. et al. // J. Appl. Phys. 2018. V. 123. № 14. Article No. 144501. https://doi.org/10.1063/1.5011772
  379. 379. Khitun A. // J. Appl. Phys. 2013. V. 113. № 16. Article No. 164503. https://doi.org/10.1063/1.4802656
  380. 380. Gertz F., Kozhevnikov A., Filimonov Y., Khitun A. // IEEE Magnetics Lett. 2016. V. 7. Article No. 3200204. https://doi.org/10.1109/LMAG.2015.2501278
  381. 381. Balynsky M., Gutierrez D., Chiang H. et al. // Scientific Reports. 2017. V. 7. Article No. 11539. https://doi.org/10.1038/s41598-017-11881-y
  382. 382. Torrejon J., Riou M., Araujo F.A. et al. // Nature. 2017. V. 547. № 7664. P. 428. https://doi.org/10.1038/nature23011
  383. 383. Sengupta A., Yogendra K., Roy K. // Proc. 2016 IEEE Int. Symp. on Circuits and Systems (ISCAS) Montreal. 22-25 May. N.Y.: IEEE, 2016. P. 922.
  384. 384. Pan C., Naeemi A. // IEEE J. Exploratory Sol.-State Computational Devices and Circuits. 2017. V. 3. P. 101. https://doi.org/10.1109/JXCDC.2018.2793536
  385. 385. Fukami S., Ohno H. // J. Appl. Phys.2018. V. 124. № 15. Article No. 151904. https://doi.org/10.1063/1.5042317
  386. 386. Nakane R., Tanaka G., Hirose A. // IEEE Access. 2018. V. 6. P. 4462. https://doi.org/10.1109/access.2018.2794584
  387. 387. Watt S., Kostylev M. // Phys. Rev. Appl. 2020. V. 13. № 3. Article No. 034057. https://doi.org/10.1103/PhysRevApplied.13.034057
  388. 388. Vogt K., Fradin F., Pearson J. et al. // Nature Commun. 2014. V. 5. Article No. 3727. https://doi.org/10.1038/ncomms4727
  389. 389. Klingler S., Pirro P., Brächer T. et al. // Appl. Phys. Lett. 2015. V. 106. № 21. Article No. 212406. https://doi.org/10.1063/1.4921850
  390. 390. Klingler S., Pirro P., Brächer T. et al. // Appl. Phys. Lett. 2014. V. 105. № 15. Article No. 152410. https://doi.org/10.1063/1.4898042
  391. 391. Brächer T., Heussner F., Pirro P. et al. // Scientific Reports. 2016. V. 6. Article No. 28235. https://doi.org/10.1038/srep38235
  392. 392. Haldar A., Tian C., Adeyeye A.O. // Science Advances. 2017. V. 3. № 7. Article No. e1700638. https://doi.org/10.1126/sciadv.1700638
  393. 393. Гуляев Ю.В., Зильберман П.Е., Казаков Г.Т., Тихонов В.В. // Письма в ЖТФ. 1985. Т. 11. № 2. С. 97.
  394. 394. Зильберман П.Е., Казаков Г.Т., Куликов В.М., Тихонов В.В. // РЭ. 1988. Т. 30. № 2. С. 347.
  395. 395. Nikolaev K.O., Lake S.R., Schmidt G. et al. // Nanowaveguides. Nano Lett. 23, 18, 8719-8724 (2023).
  396. 396. Flajšman L., Wagner K., Vaňatka M. et al. // Phys. Rev. B101. 2020. V. 101. № 1. Article No. 014436. https://doi.org/10.1103/PhysRevB.101.014436
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library