- Код статьи
- S3034590125070097 -1
- DOI
- 10.7868/S3034590125070097
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 70 / Номер выпуска 7
- Страницы
- 695-699
- Аннотация
- Приведены результаты исследования эффекта Фарадея и магнитного циркулярного дихроизма в гетероструктуре BiIG/GGG/SiO, состоящей из слоев нанометровых толщин феррита-граната BiFeO (BiIG) и парамагнитного граната GdGaO (GGG), синтезированных на кварцевой подложке SiO. Показано, что из-за диффузии ионов на интерфейсе BiIG/GGG в слое BiIG возникает точка компенсации магнитного момента ферримагнетика. Исследованы особенности диамагнитных переходов, обусловленных нахождением ионов Fe в различные подрешетки феррита-граната и ответственных за магнитологические эффекты, в окрестности точки компенсации магнитного момента. Обнаружено скачкообразное изменение энергии диамагнитных переходов при переходе через точку компенсации.
- Ключевые слова
- феррит-гранат гетероструктура эффект Фарадея магнитный циркулярный дихроизм диамагнитные переходы компенсация магнитного момента
- Дата публикации
- 01.07.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 26
Библиография
- 1. Zvezdin A.K., Kotov V.A. Modern Magnetooptics and Magnetooptical Materials. Bristol: Inst. Phys. Publ., 1997.
- 2. Deb M., Popova E., Fouchet A., Keller N. // J. Phys. D: Appl. Phys. 2012. V. 45. № 45. P. 455001. https://doi.org/10.1088/0022-3727/45/45/455001
- 3. Levy M., Borovkova O.V., Sheidler C., et al. // Optica. 2019. V. 6. № 5. P. 642. https://doi.org/10.1364/OPTICA.6.000642
- 4. Bi L., Hu J., Jiang P., et al. // Materials. 2013. V. 6. № 11. P. 5094. https://doi.org/10.3390/ma6115094
- 5. Pintus P., Ranzani L., Pinna S., et al. // Nature Electronics. 2022. V. 5. № 9. P. 604. https://doi.org/10.1038/s41928-022-00823-w
- 6. Adachi N., Denysenkov V.P., Kharisev S.I. et al. // J. Appl. Phys. 2000. V. 88. № 5. P. 2734. https://doi.org/10.1063/1.1287227
- 7. Levy M., Chakravarty A., Huang H.-C., Osgood R.M. // Appl. Phys. Lett. 2015. V. 107. № 1. P. 011104. https://doi.org/10.1063/1.4926409
- 8. Балабанов Д.Е., Котов В.А., Шавров В.Г. и др. // РЭ. 2017. Т. 62. № 1. С. 70. https://doi.org/10.7868/S003384941701003X
- 9. Zhang T., Yang Y., Wu D., et al. // Optical Materials Express. 2024. V. 14. № 3. P. 767. https://doi.org/10.1364/OME.519523
- 10. Lutsev L.V., Dubovoy V.A., Stognij A.I. et al. // J. Appl. Phys. 2020. V. 127. № 18. P. 183903. https://doi.org/10.1063/5.0007338
- 11. Sharko S.A., Serokurova A.I., Novitskii N.N. et al. // Ceramics. 2023. V. 6. P. 1415–1433. https://doi.org/10.3390/ceramics6030087
- 12. Logunov M.V., Safonov S.S., Fedorov A.S., et al. // Phys. Rev. Appl. 2021. V. 15. № 6. P. 064024. https://doi.org/10.1103/PhysRevApplied.15.064024
- 13. Kim S.K., Beach G.S.D., Lee K.-J., et al. // Nature Materials. 2022. V. 21. № 1. P. 24. https://doi.org/10.1038/s41563-021-01139-4
- 14. Дровосеков А.Б., Холин Д.И., Крейнес Н.М. // Письма в ЖЭТФ. 2020. Т. 131. № 1. С. 149. https://doi.org/10.1134/S1063776120070031
- 15. Zhang T., Yang Y., Wu D. et al. // Optical Materials Express. 2024. V. 14. № 3. P. 767. https://doi.org/10.1364/OME.519523
- 16. Dionne G.F. Magnetic Oxides. Boston: Springer US, 2009.
- 17. Dionne G.F., Allen G.A. // J. Appl. Phys. 1993. V. 73. № 10. P. 6127. https://doi.org/10.1063/1.352723
- 18. Levallois J., Nedoliuk I.O., Crassee I., Kuzmenko A.B. // Rev. Scientific Instruments. 2015. V. 86. № 3. P. 033906. https://doi.org/10.1063/1.4914846
- 19. Ветошко П.М., Бержанский В.Н., Полулях С.Н. и др. // РЭ. 2023. Т. 68. № 4. С. 391. https://doi.org/10.31857/S0033849423040149