- PII
- S0033849425010062-
- DOI
- 10.31857/S0033849425010062
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 70 / Issue number 1
- Pages
- 53-64
- Abstract
- The electrical resistance of the Mn5Si3 compound in magnetic fields up to 2 T at cryogenic temperatures in the range from 35 K to 90 K was studied. The characteristic temperatures of the magnetic phase transition TN1 and TN2 were determined based on the results of measuring the heat capacity at constant pressure CP, magnetization M and specific electrical resistance ρ. It was shown that the behavior of the ρ(T) curves differs depending on the measurement conditions and protocol. Based on the results of measuring the magnetocaloric properties in strong magnetic fields up to 10 T at cryogenic temperatures in the range from 25 to 125 K, both the inverse and conventional magnetocaloric effects were observed. The maximum value of the inverse magnetocaloric effect was ∆Tad = –1.1 K at an initial temperature T0 = 50 K in a magnetic field of 10 T. Conventional magnetocaloric effect with a maximum value of ∆Tad = +0.9 K is observed at T0 = 62.5 K in a field of 10 T. A local exponent of field distribution of entropy n is determined, the value of which n > 2 confirms the type and existence of a first-order phase transition.
- Keywords
- Mn5Si3 силицид марганца метамагнитный фазовый переход обратный магнитокалорический эффект транспортные свойства
- Date of publication
- 16.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 12
References
- 1. Tishin A.M., Pecharsky V.K., Gschneidner K.A. // Phys. Rev. B. 1999. V. 59. № 1. P. 503. https://doi.org/10.1103/PhysRevB.59.503
- 2. Balli M., Jandl S., Fournier P. et al. // Appl. Phys. Rev. 2017. V. 4. № 2. P. 021305. https://doi.org/10.1063/1.4983612
- 3. Franco V., Blázquez J.S., Conde A. // Appl. Phys. Lett. 2006. V. 89. № 22. P. 222512. https://doi.org/10.1063/1.2399361
- 4. von Ranke P.J., de Oliveira N.A., Alho B.P. et al. // J. Phys.: Cond. Matt. 2009. V. 21. № 5. P. 056004. https://doi.org/10.1088/0953-8984/21/5/056004
- 5. MacDonald A.H., Tsoi M. // Phil. Trans. R. Soc. A. 2011. V. 369. № 1948. P. 3098. https://doi.org/10.1098/rsta.2011.0014
- 6. Tishin A.M., Spichkin Y.I. The Magnetocaloric Effect and its Applications. Bristol: Inst. of Physics Publishing, 2003. https://doi.org/10.1201/9781420033373
- 7. Numazawaa T., Kamiya K., Utaki T., Matsumoto K. // Progress in Superconductivity and Cryogenics. 2013. V. 15. № 2. P. 1. https://doi.org/10.9714/psac.2013.15.2.001
- 8. Doerr M., Bœuf J., Pfleiderer C. et. al. // Physica B. 2004.V. 346–347. P. 137.
- 9. Kübler J., Felser C. // EuroPhys. Lett 2014. V. 108. № 6. P. 67001. https://doi.org./10.1209/0295-5075/108/67001
- 10. Caron L., Miao X.F., P Klaasse J.C. et al. // Appl. Phys. Lett. 2013. V. 103. № 11. P. 112404. https://doi.org/10.1063/1.4821197
- 11. Tekgul A., Cakır O., Acet M. et al. // J. Appl. Phys. 2015. V. 118. № 15. P. 153903. https://doi.org/10.1063/1.4934253
- 12. Lander G.H., Brown P.J., Forsyth J.B. // Proc. Phys. Soc. 1967. V. 91. № 2. P. 332. https://doi.org/10.1088/0370-1328/91/2/310
- 13. Menshikov A.Z., Vokhmyanin A.P., Dorofeev Yu.A. // Phys. Stat. Solid. B. 1990. V. 158. № 1. P. 319.https://doi.org/10.1002/pssb.2221580132
- 14. Cудакова Н.П., Кузнецов С.И., Михельсон А.В. и др. // Докл. АН СССР. 1976. Т. 228. № 3. С. 582. http://mi.mathnet.ru/rus/dan/v228/i3/p582
- 15. Luccas R.F., Sánchez-Santolino G., Correa-Orellana A. et. al. // J. Magn. Magn. Mater. 2019. V. 489. P. 165451. https://doi.org/10.1016/j.jmmm.2019.165451
- 16. Songlin Dagula, Tegus O. et al. // J. Alloys and Compounds. 2002. V. 334. P. 242. https://doi.org/10.1016/S0925-8388 (01)01776-5
- 17. Gottschilch M., Gourdon O., Persson J. et al. // J. Material Chemistry. 2012. V. 22. № 30. P. 15275. https://doi.org/10.1039/C2JM00154C
- 18. Brown P.J., Forsyth J.B., Nunez V., Tasset F. // J. Phys.: Cond. Matt. 1992. V. 4. № 49. P. 10025. https://doi.org/10.1088/0953-8984/4/49/029
- 19. Brown P.J., Forsyth J.B. // J. Phys.: Cond. Matt. 1995. V. 7. № 39. P. 7619. https://doi.org/10.1088/0953-8984/7/39/004
- 20. Silva M.R., Brown P.J., Forsyth J.B. // J. Phys.: Cond. Matt. 2002. V. 14. № 37. P. 8707. https://doi.org/10.1088/0953-8984/14/37/307
- 21. Кузнецов А.С., Маширов А.В., Мусабиров И.И. и др. // РЭ. 2023. Т. 68. № 4. С. 353. https://10.31857/S0033849423040083
- 22. Koshkid’ko Yu.S., Ćwik J., Ivanova T.I. et al. // J. Magn. Magn. Mater. 2017. V. 433. P. 234. https://doi.org/10.1016/j.jmmm.2017.03.027
- 23. Кузнецов А.С., Маширов А.В., Алиев А.М. и др. // ФММ. 2022. Т. 123. № 4. С. 425. https://doi.org/10.1134/S0031918X2204007X
- 24. Leciejewicz J., Penc B., Szytula A. et al. // Acta Physica Polonica A. 2008. V. 113. № 4. P. 1193. https://doi.org/10.12693/APhysPolA.113.1193
- 25. de Almeida D.M., Bormio-Nunes C., Nunes C.A. et al. // J. Magn. Magn. Mater. 2009. V. 321. P. 2578. https://doi.org/10.1016/j.jmmm.2009.03.067
- 26. Al-Kanani H.J., Booth J.G. // J. Magn. Magn. Mater. 1995. V. 140. P. 1539. https://doi.org/10.1016/0304-8853 (94)01157-5
- 27. Das S.C., Mandal K., Dutta P. et al. // Phys. Rev. B. 2019. V. 100. № 2. P. 024409. https://doi.org/10.1103/PhysRevB.100.024409
- 28. Sürgers C., Kittler W., Wolf T., v. Löhneysen H. // AIP Advances. 2016. V. 6. № 5. P. 055604. https://doi.org/10.1063/1.4943759
- 29. Meaden G.T. // Contemporary Physics, 1971. V. 12. № 4. P. 313. https://doi.org/10.1080/00107517108205267
- 30. Wilding M.D., Lee E.W. // Proc. Phys. Soc. 1965. V. 85. № 5. P. 955. https://doi.org/10.1088/0370-1328/85/5/313
- 31. Hall P.M., Legvold S., Spedding F.H. // Phys. Rev. 1960. V. 117. № 4. P. 971. https://doi.org/10.1103/PhysRev.117.971
- 32. Ellerby M., McEwen K.A., Jensen J. // Phys. Rev. B. 1998. V. 57. № 14. P. 8416. https://doi.org/10.1103/PhysRevB.57.8416
- 33. Das S.C., Pramanick S., Chatterjee S. // J. Magn. Magn. Mater. 2021. V. 529. P. 167909. https://doi.org/10.1016/j.jmmm.2021.167909
- 34. Adhikari S.K., Roy R., Das S.C. et al. // J. Alloys and Compound. 2023. V. 967. Article No. 171752. https://doi.org/10.1016/j.jallcom.2023.171752
- 35. Das S.C., Chatterjee S. // J. Magn. Magn. 2022. V. 892. P. 162212. Mater. https://doi.org/10.1016/j.jallcom.2021.162212
- 36. Adhikari S.K., Roy R., Das S. C. et al. // J. Magn. Magn. 2024. V. 589. P. 171591. https://doi.org/10.1016/j.jmmm.2023.171591
- 37. Zheng X.Q., Xu Z.Y., Zhang B. et al. // J. Magn. Magn. Mater. 2017. V. 421. P. 448. https://doi.org/10.1016/j.jmmm.2016.08.048
- 38. Rajivgandhi R., Arout Chelvane J., Nigam A.K. et al. // J. Alloys and Compounds. 2020. V. 815. Article No. 152659. https://doi.org/10.1016/j.jallcom.2019.152659
- 39. Kamantsev A.P., Koshkid’ko Yu.S, Taskaev S.V. et al. // J. Superconductivity and Novel Magnetism. 2022. V. 35. № 8. P. 2181. https://doi.org/10.1007/s10948-022-06336-z
- 40. Панкратов Н.Ю., Терешина И.С., Никитин С.А. // ФММ. 2023. Т. 124. С. V. 124. № 11. P. 1093. https://doi.org/10.1134/S0031918X23601841
- 41. Gu Y., Wang X., Li S. et al. // J. Alloys and Compounds. 2023. V. 960. Article No. 170918. https://doi.org/10.1016/j.jallcom.2023.170918
- 42. Aндреенко А.С., Белов К.П., Никитин С.А., Тишин А.М. // Успехи физ. наук. 1989. Т. 158. № 4. С. 553. https://doi.org/10.1070/PU1989v032n08ABEH002745
- 43. Алиев А.М., Батдалов А.Б., Ханов Л.Н. и др. // ФТТ. 2020. Т. 62. № 5. С. 748 https://doi.org/10.1134/S1063783420050030
- 44. Ханов Л.Н. Батдалов А.Б., Маширов А. и др. // ФТТ. 2018. Т. 60. № 6. С. 1099. https://doi.org/10.21883/FTT.2018.06.45982.09M
- 45. Pramanick S., Chatterjee S. et al. // J. Alloys and Compounds. 2013. V. 578. P. 157. https://doi.org/10.1016/j.jallcom.2013.04.074
- 46. Fayzullin R., Buchelnikov V., Mashirov A., Zhukov M. // Physics Procedia. 2015. V. 75. P. 1259. https://doi.org/10.1016/j.phpro.2015.12.139
- 47. Kuznetsov D.D., Kuznetsova E.I., Mashirov A.V. et al. // Nanomaterials. 2023. V. 13. № 8. Article No. 1385. https://doi.org/10.3390/nano13081385
- 48. Biniskos N., Schmalzl K., Raymond S. et al. // Phys. Rev. Lett. 2018. V. 120. № 25. P. 257205. https://doi.org/10.1103/PhysRevLett.120.257205
- 49. Sürgers C., Wolf T., Adelmann P. et al. // Sci. Rep. 2017. V. 7. Article No. 42982. https://doi.org/10.1038/srep42982
- 50. Pecharsky V.K., Gschneidner K.A. // J. Appl. Phys. 1999. V. 86. № 1. P. 565. https://doi.org/10.1063/1.370767
- 51. Tegus O., Bruck E., Zhang L. et al. // Physica B: Cond. Matt. 2002. V. 319. № 1–4. P. 174. https://doi.org/10.1016/S0921-4526 (02)01119-5
- 52. Shen T.D., Schwarz R.B., Coulter J.Y., Thompson J.D. // J. Appl. Phys. 2002. V. 91. № 8. P. 5240. https://doi.org/10.1063/1.1456957
- 53. Law J.Y., Franco V., Moreno-Ramírez L.M. et al. // Nature Commun. 2018. V. 9. Article No. 2680. https://doi.org/10.1038/s41467-018-05111-w