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Рассмотрено явление нестационарного запаздывания возбуждения высокоамплитудных 
хаотических колебаний в системе из двух связанных осцилляторов. Приведено краткое описание 
двух реальных физических систем, допускающих возбуждение хаотических колебаний, обладающих 
нестационарным запаздыванием. Показано, что колебания в обеих системах могут быть описаны на 
основе одной и той же модели двух связанных осцилляторов, один из которых является нелинейным, 
а  второй – линейным. Для такой модели приведена система двух дифференциальных уравнений 
второго порядка. Произведено упрощение данной системы с сохранением ядра, обеспечивающего 
эффект запаздывания высокоамплитудных хаотических колебаний. Рассмотрена возможность 
замены в системе внешнего возбуждения на начальное смещение одного из осцилляторов.

Ключевые слова: нелинейные колебания, связанные осцилляторы, хаотические колебания, 
задержка колебаний
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НЕСТАЦИОНАРНОЕ ЗАПАЗДЫВАНИЕ НЕЛИНЕЙНЫХ 
КОЛЕБАНИЙ МАГНИТОУПРУГОЙ СИСТЕМЫ В УСЛОВИЯХ 
ВНЕШНЕГО ВОЗБУЖДЕНИЯ И НАЧАЛЬНОГО СМЕЩЕНИЯ 

НАМАГНИЧЕННОСТИ

УДК 537.874

РАДИОФИЗИЧЕСКИЕ ЯВЛЕНИЯ 
В ТВЕРДОМ ТЕЛЕ И ПЛАЗМЕ 

ВВЕДЕНИЕ

Нелинейные и нестационарные процессы явля-
ются основополагающими во многих задачах со-
временной физики. Большим разнообразием таких 
задач богата и физика магнитных явлений. Здесь 
проявление нелинейности наблюдается в  широ-
ком диапазоне явлений: от процессов динамики 
доменных структур до параметрического возбужде-
ния обменных спиновых волн и ударного измене-
ния магнитного состояния вещества под действием 
мощного импульса света от фемтосекундного лазе-
ра [1–3]. В условиях ферромагнитного резонанса 
наблюдаются различные явления автоколебатель-
ного и стохастического характера: автомодуляция 
за порогом обменных волн, шумовой характер 
колебаний в системе феррит-резонатор и многие 
другие. Широкий спектр таких явлений обеспе-
чивается взаимодействием магнитных колебаний 

с упругими: возбуждение упругих колебаний в ди-
апазоне СВЧ, упругая накачка спиновых волн, 
упругий резонанс в  условиях параметрического 
возбуждения обменных волн, а также взаимодей-
ствием магнитных и электромагнитных колебаний 
в резонаторе, где тоже наблюдаются автомодуляци-
онные и стохастические явления [4, 5].

Одной из важных практических задач современ-
ной физики является возбуждение мощного ги-
перзвука с помощью магнитострикционного пре-
образователя, работающего в условиях ферромаг-
нитного резонанса. Использование в этой задаче 
двухслойной структуры позволяет реализовывать 
нелинейные колебания, приводящие к  увеличе-
нию мощности гиперзвука до 100 раз по сравне-
нию с линейным режимом, и одновременно с этим 
достигается расширение полосы преобразователя 
до пяти раз [6–8].
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Зачастую указанные явления для своей интер-
претации требуют использования внушительного 
математического аппарата, сложность которого 
вызывает необходимость создания более простых 
моделей, в достаточной степени описывающих на-
блюдаемые физические явления. Одной из таких 
моделей является модель двух связанных осцил-
ляторов, один из которых обладает нелинейными 
свойствами [9]. Свое развитие модель получила 
в работе [10], где применительно к задаче возбуж-
дения гиперзвука рассматриваются сильно нели-
нейные колебания в магнитоупругой среде. В этой 
работе в качестве основного элемента преобразо-
вателя рассматривается нормально намагничен-
ная ферритовая пластина, имеющая магнитоупру-
гие свойства. Роль одного осциллятора выполня-
ет магнитная подсистема, в которой возбуждается 
ферромагнитный резонанс, а роль другого играет 
упругий резонатор, в котором по толщине ферри-
товой пластины возбуждаются упругие колебания. 
Предложенная модель позволила выявить важные 
характеристики взаимодействия колебаний ос-
цилляторов. С  ее помощью в  рамках линейного 
и квадратичного приближений были определены 
различные режимы вынужденных колебаний на-
магниченности и упругого смещения, в том числе 
имеющие автоколебательный и  хаотический ха-
рактер. Были получены аналитические выражения, 
связывающие параметры предложенной системы 
уравнений с параметрами материала – намагни-
ченностью и коэффициентами упругости.

В работах [11–13] показано, что рассматриваемая 
модель связанных осцилляторов в режиме умноже-
ния частоты допускает задержку развития колеба-
ний после включения возбуждения на период вре-
мени, намного превосходящий времена релаксации 
обоих осцилляторов. Для интерпретации феномена 
запаздывания колебаний была использована мо-
дель динамического потенциала, а также в некото-
рой степени механизм биений между собственными 
колебаниями магнитного осциллятора и возбужда-
ющим сигналом [14]. Тем не менее, объяснение ме-
ханизмов запаздывания колебаний все еще является 
не полным, поскольку остались нераскрытыми роль 
различных компонент системы уравнений, степень 
влияния нелинейности и характера связи между ос-
цилляторами на это явление, а также роль релакса-
ционных процессов и уровня возбуждения.

Таким образом, основной задачей данной ра-
боты является дальнейшая проработка модели не-
стационарного запаздывания колебаний, ее мате-
матической сущности, приведение к максимально 
упрощенному виду для выявления главных харак-
теристик и более детальной интерпретации наблю-
даемых явлений.

1. БАЗОВАЯ СИСТЕМА УРАВНЕНИЙ 
И ОБЩИЙ ХАРАКТЕР КОЛЕБАНИЙ

В основе данной работы лежат две базисные за-
дачи – генерация мощного гиперзвука магнито-
стрикционным преобразователем и возбуждение 
шумовых колебаний в ферритовом диске, находя-
щемся в электродинамическом резонаторе. Как по-
казано в работе [15], обе эти задачи могут быть ин-
терпретированы с помощью колебаний в системе 
из двух связанных осцилляторов, один из которых 
является гиромагнитным и обладает нелинейными 
свойствами, а второй – упругим или электродина-
мическим и исключительно линейным. В матема-
тическом представлении эти задачи сводятся к од-
ной и той же системе из двух дифференциальных 
уравнений второго порядка, одно из которых соот-
ветствует колебаниям магнитной системы и содер-
жит нелинейные слагаемые, а второе – линейное 
уравнение, соответствующее упругой или электро-
динамической системе.

Квадратичное приближение для намагниченно-
сти позволяет ввести динамический потенциал в виде 
степенной функции четвертого порядка по двум пе-
ременным, учитывающий изменения колебаний на-
магниченности под действием упругого возмущения. 
При этом оба уравнения и их связь приобретают до-
полнительные нелинейные слагаемые, возникшие 
вследствие последовательного учета граничных ус-
ловий. Полученная таким образом обобщенная мо-
дельная система уравнений имеет вид [10]:
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где коэффициенты a b dik ik ik, ,� �  определяются маг-
нитными и упругими параметрами материала пла-
стины. Уравнения (1) и (2) содержат нелинейность 
третьей степени, причем как самих осцилляторов, 
так и их связи. При этом система является симме-
тричной относительно индексов “1” и “2”, а отсут-
ствие возбуждения во втором уравнении в данном 
случае принципиальным не является.

В работах [11–13, 15] система (1), (2) была подвер-
гнута некоторой трансформации с целью получения 
ряда автомодуляционных режимов. Подробно были 
рассмотрены слагаемые, отвечающие за линейную 
связь второго осциллятора с первым и учитывающие 
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более высокую степень нелинейной связи. В резуль-
тате система (1), (2) приобрела вид [11]:

∂
∂

+
∂
∂

+ + + + = ( )
2

1
2 1

1
1
2

1 1 2 1
3

1
2

2 0
x

t

x
t

x x x x x A tβ ω γ δ η ωcos

∂
∂

+
∂
∂

+ + + + = ( )
2

1
2 1

1
1
2

1 1 2 1
3

1
2

2 0
x

t

x
t

x x x x x A tβ ω γ δ η ωcos ;                (3)

∂
∂

+
∂
∂

+ + =
2

2
2 2

2
2
2

2 2 1 0
x

t

x
t

x xβ ω γ .           (4)

Здесь произведена следующая замена обозна- 
чений:

а11 → 1, а21 → 1, а12 → β1, а22 → β2, а13 → a a a a a a a a11 21 12 1 22 2 13 1
2
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а14 → γ1, а24 → γ2, b11 → δ, b12 → η, A0 → A,         (5)

а также сделана нормировка параметров системы 
на коэффициент при второй производной. Осталь-
ные коэффициенты из системы (1), (2) были при-
няты равными нулю. Таким образом, в  системе 
(3)–(4) были введены обозначения: x1, x2 – коорди-
натные переменные, β1, β2 – параметры затухания, 
ω1, ω2 – собственные частоты осцилляторов, γ1, 
γ2 – коэффициенты линейной связи, δ – параметр 
нелинейности первого осциллятора, η – параметр 
нелинейной связи, A и ω0 – амплитуда и частота 
возбуждающей силы.

Как показано в работах [11–14], в режиме ум-
ножения частоты после включения возбуждения 
система (3), (4) демонстрирует характерную осо-
бенность развития колебаний. Сначала формиру-
ются близкие к синусоидальным колебания незна-
чительной амплитуды, а затем через время, превы-
шающее времена релаксации обеих колебательных 
систем, амплитуда колебаний возрастает на не-
сколько порядков. Вид этих высокоамплитудных 
колебаний близок к хаотическому. Кроме этого, 
они имеют определенный порог по уровню возбуж-
дения или начального смещения. Если этот порог 
возбуждения не превышен, то колебания продол-
жают оставаться малоамплитудными сколь угодно 
продолжительное время. Наряду с этим многократ-
ное превышение порога возбуждения приводит 
к  исчезновению интервала задержки, и  высоко-
амплитудные хаотические колебания возникают 
практически сразу после включения возбуждения.

2. ВЛИЯНИЕ СПОСОБОВ ВОЗБУЖДЕНИЯ 
СИСТЕМЫ НА ФОРМИРОВАНИЕ 

ЗАПАЗДЫВАНИЯ КОЛЕБАНИЙ

Для детального изучения система (3), (4) не-
сколько сложна, поскольку в общем случае содер-
жит десять независимо изменяемых параметров. 
Поэтому для упрощения анализа представляется 
целесообразным выявить роль отдельных слага-
емых обоих уравнений с  тем, чтобы некоторые 

из них можно было исключить из рассмотрения, 
и  оставить только те, которые непосредственно 
причастны к явлению запаздывания высокоампли-
тудных колебаний.

Как уже отмечалось выше, явление запаздыва-
ния колебаний критично к уровню возбуждения 
системы. Поэтому рассмотрение роли параметров 
следует начать именно с  возбуждения, которое 
представлено в системе единственным слагаемым 
A tcos ω0( ). Это слагаемое обеспечивает поступле-
ние энергии в систему, которая впоследствии рас-
сеивается за счет диссипации, выраженной сла-
гаемыми β1

1∂
∂
x
t

 и β2
2∂

∂
x
t

. Если эти диссипативные 
слагаемые убрать, то очевидно, что амплитуда ко-
лебаний будет расти неограниченно. Альтернатив-
ным способом возбуждения колебаний в системе 
может являться некоторое начальное смещение од-
ного из осцилляторов, но при этом в системе долж-
ны отсутствовать диссипация энергии и внешнее 
возбуждение. Согласно общим принципам теории 
колебаний такая система в отсутствие диссипации 
и сохранении механизмов превращения энергии 
будет колебаться вблизи какого-то среднего поло-
жения с частотой, которая определяется параме-
трами самой системы. Таким образом, принимая 
A = 0, β1 = β2 = 0, система (3)–(4) приобретает вид:
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Проверим, реализуется ли в системе (6)–(7) за-
держка высокоамплитудных колебаний после сооб-
щения одному из осцилляторов начального смеще-
ния. Для этого сравним колебания осцилляторов 
в системах (3), (4) и (6), (7) при равных параметрах, 
не отвечающих за диссипацию и возбуждение.

На рис.  1 и  рис.  2 показаны колебания и  па-
раметрические портреты соответственно перво-
го и второго осцилляторов, соответствующие си-
стемам (3)–(4) (левый столбец) и (6)–(7) (правый 
столбец).

С  целью повышения наглядности и  удобства 
сравнения рисунков уровень возбуждения A = 70 
и начальное смещение x10 = 2.16 подбирались та-
ким образом, чтобы времена запаздывания раз-
вития колебаний были одного порядка. В данном 
случае для внешнего возбуждения время запазды-
вания составляет 4.2 ед. времени, для начального 
смещения – 3 ед. времени. Выбор других значений 
возбуждения и смещения принципиально картину 
не меняет.

Если сравнить рисунки попарно по горизонта-
ли, можно заметить, что характер колебаний в обо-
их случаях один и тот же. У обоих осцилляторов 
после окончания задержки начинают развиваться 
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близкие к хаотическим колебания, амплитуда ко-
торых поддерживается в постоянных пределах.

Параметрические портреты для первого осцил-
лятора (рис.  1 (д) и  рис.  1 (е)) представляют со-
бой “горизонтальные восьмерки”. Такой вид па-
раметрического портрета свойственен колебаниям 
в системе, обладающей динамическим потенциа-
лом с двумя минимумами [11, 15].

Параметрические портреты для второго осцил-
лятора (рис. 2 (д) и рис. 2 (е)) по виду близки к го-
ризонтальным овалам вследствие того, что дина-
мический потенциал для этого осциллятора имеет 
всего один минимум. При этом общий характер 
колебаний второго осциллятора схож с колебани-
ями первого, поскольку возбуждение этого осцил-
лятора происходит за счет линейной связи, описы-
ваемой коэффициентом γ2 в уравнениях (4) и (7).
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Таким образом, можно констатировать, что как 
в случае внешнего возбуждения, так и в случае на-
чального смещения первого осциллятора, характер 
колебаний, описываемых системами (3), (4) и (6), 
(7), практически совпадает. Задержка присутствует 
в обоих случаях, после которой формируются вы-
сокоамплитудные хаотические колебания.

ЗАКЛЮЧЕНИЕ

Рассмотрено явление нестационарного запаз-
дывания возбуждения высокоамплитудных хао-
тических колебаний в системе из двух связанных 

осцилляторов, один из которых является нелиней-
ным. Приведено краткое описание двух реальных 
физических систем, допускающих возбуждение ха-
отических колебаний. Первая система представля-
ет собой нормально намагниченную ферритовую 
пластину, обладающую магнитоупругими свой-
ствами. Такая система в условиях ферромагнитно-
го резонанса способна генерировать интенсивные 
гиперзвуковые колебания, которые при опреде-
ленных условиях принимают хаотический харак-
тер. Вторая система – это электродинамический 
резонатор волноводного типа с намагниченным 
по нормали ферритовым диском. При достижении 
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определенного порога по возбуждению в такой си-
стеме возникают электромагнитные колебания шу-
мового характера.

Показано, что колебания в обеих системах мо-
гут быть описаны на основе одной и той же моде-
ли двух связанных осцилляторов – нелинейного 
и линейного. Для этого случая приведена общая 
система двух дифференциальных уравнений второ-
го порядка, нелинейность в которых представлена 
в виде разложения в степенной ряд по двум пере-
менным до четверного порядка. С применением 
квадратичного приближения были выделены ос-
новные слагаемые уравнений, содержащие помимо 
второй производной по времени, диссипативного 
и потенциального членов еще и слагаемые кубиче-
ской нелинейности, а также слагаемые линейной 
и нелинейной связи между уравнениями.

Возбуждение колебаний в системе осуществля-
ется путем приложения к  первому осциллятору 
внешней периодической силы. Показано, что при 
достаточном уровне внешнего сигнала в системе 
возникают высокоамплитудные хаотические коле-
бания, причем начало их возбуждения происходит 
с задержкой относительно времени приложения 
внешней силы.

Вследствие сложности полученной системы 
задачей данной работы было выделение из нее 
максимально упрощенного ядра, сохраняющего 
задержку развития высокоамплитудных хаотиче-
ских колебаний. Это выделение выполнено путем 
отказа от слагаемых, не влияющих на рассматри-
ваемое явление.

В  качестве первого упрощения рассмотрена 
возможность исключения внешнего возбуждения 
системы. При этом для возбуждения системы ис-
пользовалось начальное смещение первого осцил-
лятора. Сохранение незатухающего режима коле-
баний обеспечивалось за счет обнуления диссипа-
тивных слагаемых. Показано, что при надлежащем 
выборе начального смещения характер колебаний 
каждого из осцилляторов, а также их параметри-
ческие портреты, образованные самими колеба-
ниями в сочетании с производными по времени, 
практически полностью идентичен случаю внеш-
него возбуждения. Также определено пороговое 
значение начального смещения и приведена интер-
претация параметрических портретов для каждого 
из осцилляторов на основе модели динамического 
потенциала.
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The phenomenon of non-stationary delay in excitation of high-amplitude chaotic oscillations in a system 
of two coupled oscillators is considered. A brief description of two real physical systems that allow 
excitation of chaotic oscillations with non-stationary delay is given. It is shown that oscillations in 
both systems can be de-scribed based on the same model of two coupled oscillators, one of which is 
non-linear and the other is linear. A system of two second-order differential equations is given for such 
a model. This system is simplified while preserving the kernel that provides the effect of delay in high-
amplitude chaotic oscillations. The possibility of replacing external excitation in the system with the 
initial displacement of one of the oscillators is considered.
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