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УДК 321.396.67

АНТЕННО-ФИДЕРНЫЕ СИСТЕМЫ 

1. ПОСТАНОВКА ЗАДАЧИ

Приземные излучатели или стелющиеся ан-
тенны (СА) декаметрового (3…30 МГц) диапа-
зона волн (ДКМВ) являются проволочными ан-
теннами, проводники которых расположены на 
границе воздух-грунт. СА применяют не только 
для радиосвязи [1], но и  для исследования ио-
носферы [2] (в  составе ионозондов) и  земли [3] 
(в  составе георадаров), поскольку они просты 
и удобны в эксплуатации и не требуют мачтовых 
устройств. Информация о  характеристиках рас-
пространения электромагнитной волны (ЭМВ) 
вдоль проводников СА необходима при их проек-
тировании. Распределение тока вдоль линейных 
проводников СА в гармоническом приближении  
I x I x( ) = −( )0exp γ  [4] (ось координат Ox совпадает 
с проводником, а точка возбуждения СА – с нача-
лом координат), где постоянная распространения 
γ α β= + i  (α – коэффициент затухания, β – ко-
эффициент фазы). По распределению тока вдоль 
проводников СА могут быть найдены ее основные 
характеристики: входное сопротивление и коэф-
фициент усиления антенны. Частотные зависимо-
сти γ от характеристик грунта (его комплексной 

диэлектрической проницаемости (КДП) ε ε ε= ′ − ′′i )  
применяют для анализа систем высокочастотного 
заземления [5]. Также актуальна и обратная задача 
восстановления неизвестных значений КДП грун-
та по измеренным значениям постоянной распро-
странения ЭМВ вдоль проводников СА, размещен-
ной на нем. Последнее позволяет проводить опера-
тивный неразрушающий контроль грунта.

Результаты электродинамического анализа СА, 
позволяющие сформулировать частотную зависи-
мость γ от характеристик грунта ε, приведенные 
в источниках, как в достаточно давно цитируемых 
[6–8], так и сравнительно свежих [9], существенно 
отличаются друг от друга. Зависимости γ от ε при-
ведены в табл. 1 с указанием источника с единой 
системой обозначений.

В  настоящее время проведены многочислен-
ные измерения зависимостей γ от ε в диапазонах 
УКВ и СВЧ, например [10, 11], и их результаты до-
статочно хорошо коррелируют как с результатами 
аналитических представлений, так и электродина-
мического моделирования с помощью ЭВМ. Пу-
бликации с верификацией аналитических зависи-
мостей γ от ε в ДКМВ-диапазоне отсутвуют.
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Целью данной статьи стало проведение экспе-
риментальных исследований постоянной распро-
странения ЭМВ вдоль провода излучателя стелю-
щейся дипольной антенны в  ДКМВ-диапазоне 
и сравнение полученных результатов с аналитиче-
скими выражениями.

2. МЕТОДЫ ИЗМЕРЕНИЙ

Для реализации поставленной цели выполнены 
измерения: а) профиля КДП грунта по глубине до 1 м;  
б) постоянной распространения ЭМВ вдоль прово-
дников СА. Время и место проведения измерений: 
осень 2023 года на сухой песчаной и влажной засо-
ленной глинистой почвах в Омской области (с ко-
ординатами 54°59′44′′ с. ш. 72°39′11′′ в. д. и 54°63′10′′ 
с. ш. 73°93′60′′ в. д.).

При определении глубинного профиля КДП грун-
та его забор проведен с помощью почвенного бура 
(близкого по конструкции к буру Некрасова [12]).  
Измерение КДП грунта проведено на месте забо-
ра (для сохранения естественной влажности грунта) 
с помощью ячейки измерительной на базе симме-
тричной полосковой линии, описанной в [13], и пор-
тативного аккумуляторного векторного анализатора 
цепей (ВАЦ). Измерения постоянной распростра-
нения γ проведено в месте забора грунта косвенно 
(с помощью модели длинной линии) по прямо из-
меренному двухпортовым ВАЦ входному импедансу 
Z симметричной дипольной СА. Для этого измерен-
ный импеданс Z СА был аппроксимирован методом 

наименьших квадратов функцией Zа = Wcth(γL) [6], 
где L – длина плеча СА, W – волновое сопротивле-
ние СА, которое изменяется с частотой пропорцио-
нально отношению β0/β (1)

Z
W

Lа = ( )0

0β β
γcth ,                      (1)

где W0 = 120[ln(L/r)  –1] – волновое сопротивление 
СА в свободном пространстве, r – радиус провода 
излучателя СА [14].

Прямые измерения Z выполнены следующим об-
разом (рис. 1). После развертывания плеч СА длиной 

Таблица 1. Зависимости постоянной распространения γ от характеристик грунта ε
Источник Аналитическое выражение зависимости γ(ε)

[6]

γ = + ( ) ( )
− ( ) +












i

h r h

K h

h
β

β

β
β0

1
2

1 1

1
1

2
2

1

2

2

2ln

+ ( ) − + ( ) + ( ) +


















i iπ
β

β
β β βI h

h
h h h1 1

1

1 1
3

1
5

2

4
2

3

2

45

2

1575








1
2

[7, 8] γ
ββ

≈
+

i 0
2

1
2

2

[9]
γ β

β
= −







i
iZ

h
h
r

s
0

0

1
2

2�ln

Примечание: I1 и K1 – модифицированные функции Бесселя первого порядка первого и второго рода, соответственно; h –  
высота проводника над грунтом; r – радиус проводника; β0 и β1 – постоянная распространения ЭМВ в свободном про-

странстве и в грунте, соответственно; Zs = β0 /β1. Зависимость γ от ε заключена в зависимости β εβ1 0= , где ε ε σ
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КДП грунта с удельной проводимостью σ и относительной диэлектрической проницаемостью ε. Причем для всех источ-
ников аналитические выражения зависимости γ от ε применимы в приближении β1 >> β0.
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Рис. 1. Схема проведения измерения импеданса СА:  
1 – проводник излучателя дипольной СА, 2 – оснастка, 
3 – коаксиальные кабели, 4 – ВАЦ, 5 – порт 1, 6 – порт 2.
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16 м, выполненных проводом МГШВ 1.0 [15], на ме-
сте забора грунта к каждому из них были подключе-
ны коаксиальные кабели (длиной 300 мм) посред-
ством оснастки в  виде двух СВЧ разъемов (типа 
SMA розетка приборная с фланцем), фланцы кото-
рых гальванически соединены медной пластиной 
шириной 10 мм, толщиной 0.5 мм и длиной 50 мм.  
Центральные жилы СВЧ разъемов соединены с про-
водниками излучателей СА и изолированы друг от 
друга. Коаксиальные кабели в свою очередь были 
подключены к портам ВАЦ для проведения измере-
ния импеданса каждого из плеч СА Z11 и Z22. Затем, 
не разбирая оснастки, были проведены измерения 
коэффициента передачи S12 между портами. Соглас-
но методике измерения характеристик устройств 
с  симметричным входом несимметричными при-
борами, изложенной в [16], по прямо измеренным 
значениям Z11, Z22 (Ом) и S12 (в разах) были рассчи-
таны значения Z импеданса СА по формуле – все 
величины комплексные

Z Z Z Z Z Z S Z= + − = + −11 22 12 11 22 12 222 2 .    (2)

Размеры плеч СА L были выбраны достаточ-
ными не только для применения модели длинной 
линии (ограничение по длине снизу), но и  для 
возможности наблюдения пульсаций импеданса 
(ограничение по длине сверху, обусловленное за-
туханием ЭМВ при распространении вдоль прово-
дника СА).

Измерения мнимой части постоянной рас-
пространения γ были также проведены на трех 
частотах ДКМВ-диапазона через коэффициент 
укорочения β0 /β, выраженный как отношение 
первой частоты последовательного резонанса 
СА f к первой резонансой частоте f0 ее излучате-
лей в свободном пространстве, и как отношение 
волнового сопротивления излучателей на грун-
те к волновому сопротивлению СА в свободном 
пространстве (W/W0). Как W0, так и f0 определе-
ны расчетным путем. Волновое сопротивление 
СА на грунте было определено по активной части 
импеданса Z по формуле

W R R= min max ,                        (3)

где максимальные Rmax и минимальные Rmin, сле-
дующие друг за другом по частоте ее значения [17]. 
Для определения коэффициента укорочения по ча-
стотному положению f первого последовательного 
резонанса СА f0 определялась согласно f c L0 4= / ,  
где c – скорость света в свободном пространстве.

Выражения табл. 1 получены в приближении 
однородного грунта, поэтому в  процессе их экс-
периментальной апробации был применен метод 
усреднения, описанный в [18] по определению эф-
фективного значения КДП слоистого грунта.

3. РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ

Результат измерения профиля КДП ε и  σ по 
глубине h приведены на рис. 2 для песчаной почвы 
(а) и для глинистой (б).

Эффективные значения составили εэф = 16  
и σ эф = 120 мСм/м для глинистой почвы и εэф = 3.9  
и σ эф = 1.1 мСм/м для песчаной почвы.

Результаты прямых измерений импеданса СА 
(сплошная линия для действительной части и ли-
ния точек для мнимой) и результат аппроксимации 
(квадраты и треугольники) с помощью формулы (3) 
приведены на рис. 3 для песчаной (а) и глинистой 
(б) почв.

Результаты измерения постоянной распростра-
нения ЭМВ γ (коэффициента фазы, отнесенного 
к коэффициенту фазы в свободном пространстве) 
приведены на рис. 4 (сплошная линия) совмест-
но со значениями, полученными аналитически 
(линия точек для источника [6]) для песчаной (а) 
и глинистой (б) почв.

Крестом обозначены результаты определения 
коэффициента фазы через коэффициент укоро-
чения по положению первого резонанса. Кругами 
с точками отмечены результаты определения ко-
эффициента укорочения через значения волнового 
сопротивления. Первый последовательный резо-
нанс для СА на песчаном грунте находился на ча-
стоте 2.23 МГц, а для глинистого грунта эта частота 
принимала значение 2.85 МГц.

По аналогии на рис. 5 приведены результаты 
измерения коэффициента затухания (отнесенного 
к коэффициенту фазы в свободном пространстве 
в масштабе 100:1) для песчаной (а) и глинистой (б) 
почв. В результатах рис. 4, 5 приведены аналити-
чески полученные значения постоянной распро-
странения γ лишь для источника [6], потому что 
результаты, полученные согласно источнику [7–9] 
существенно (в разы или даже порядки) отличают-
ся как от [6], так и от экспериментальных данных. 
Значения коэффициента фазы и затухания, полу-
ченные для влажной глинистой почвы, приведены 
на рис. 6 в логарифмическом масштабе.

Необходимо отметить, что с  ростом частоты 
(на частотах выше 100 МГц) результаты, получен- 
ные согласно источникам [6–9] становятся, прак-
тически, идентичными друг другу. Кроме того, 
данные источника [9] оказались наиболее близки 
к [6] и экспериментальным данным, нежели [7, 8], 
в ДКМВ-диапазоне (на частотах выше 20 МГц).

4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Результаты измерений глубинного профиля грун-
та для песчаной почвы хорошо коррелируют с дан-
ными [19], а зависимость КДП глинистой почвы от 
глубины объясняется профилем влажности грунта.
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Результаты прямых измерений импеданса СА 
аппроксимированы функцией (3) достаточно точ-
но за исключением частотного диапазона в окрест-
ности первых последовательного и параллельного 
резонансов, где СА может быть скорее представ-
лена как два связанных резонатора, нежели как 
линия с распределенными параметрами. Несмо-
тря на это, результаты, полученные с  помощью 

аппроксимации импеданса и посредством опреде-
ления коэффициента укорочения по положению 
первого последовательного резонанса, отличаются 
не более чем на 5 % внизу диапазона (взято отно-
сительное отклонение значений). Коэффициенты 
укорочения, восстановленный согласно приме-
няемой методике, и с помощью метода волновых 
сопротивлений, отличаются столь же мало. Что 
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Рис. 2. Профиль действительной части КДП  ε и проводимости σ по глубине h для песчаной почвы (а) и глинистой (б).
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позволяет говорить о достоверности выполненных 
измерений постоянной распространения.

Относительные отклонения расчетных зна-
чений по [6] от измеренных для β мнимой части 
постоянной распространения не превышают 12 % 
и 25 % для глинистого и песчаного грунта соответ-
ственно. Меньшие отклонения для влажного гли-
нистого грунта могут быть объяснены тем, что для 
него соотношение β1 >> β0 удовлетворено в боль-
шей степени, нежели для сухого песчаного.

Относительные отклонения расчетных значе-
ний по [6] от измеренных для α действительной 
части постоянной распространения не превышают 
105 % и 75 % для глинистого и песчаного грунта, 
соответственно. Наибольшие отклонения (равно-
великие как в низкочастотной, так и в высокоча-
стотной области ДКМВ-диапазона) для глинистого 
грунта, вероятно, связаны с его слоистой структу-
рой его глубинного профиля. В отличие от практи-
чески однородного песчаного грунта, для которого 
отклонение на частотах выше 8 МГц составило не 
более 15 %.

Относительные отклонения расчетных зна-
чений постоянной распространения на десятки 
процентов (для мнимой части) и  на сотню (для 
действительной) влекут за собой значительные 
отличия ожидаемых проектно характеристик СА 
от измеряемых натурно (например, как показано 
в [20], нижняя рабочая частота СА будет отличать-
ся более чем в 2 раза).

ЗАКЛЮЧЕНИЕ

Проведена экспериментальная апробация из-
вестных аналитических способов вычисления по-
стоянной распространения волны вдоль проводни-
ка симметричной дипольной стелющейся антенны 
и показано, что результаты определения постоян-
ной распространения по формуле, приведенной 
в  [6], отличаются наибольшей достоверностью. 
При этом наилучшие по точности результаты по-
лучены для однородного грунта.

Отмечены расхождения результатов экспери-
мента и расчетов по известным формулам. Повы-
шение точности определения постоянной распро-
странения электромагнитной волны вдоль провод- 
ников стелющихся антенн путем расчета требует 
дальнейших исследований.
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The article presents the results of experimental studies of the dependence of the propagation constant 
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