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Путем численного моделирования проведено исследование характеристик согласования и излучения 
плоской синфазной двумерно-периодической сверхдиапазонной антенной решетки щелевых рупоров 
в зависимости от периода и длины элементов решетки, входного и выходного сопротивления, типа 
питающих линий и  формы экрана. Разработан и  исследован 64-канальный делитель мощности 
с  выходами в  виде симметричных двухпроводных полосковых линий и  проведены исследования 
решетки 8 × 8 элементов с делителем мощности в качестве системы питания. Показано, что решетка 
с П-образным экраном обеспечивает рабочую полосу частот более 20:1.

Ключевые слова: антенные решетки, сверхширокополосные антенны, сверхдиапазонные антенны

Поступила в редакцию 21.05.2024 г. 
После доработки 21.05.2024 г.

Принята к публикации 29.05.2024 г.

аИнститут радиотехники и электроники им. В.А. Котельникова РАН,
ул. Моховая, 11, стр. 7, Москва, 125007 Российская Федерация

bМосковский физико-технический институт (национальный исследовательский университет),
Институтский пер., 9, Долгопрудный, Московская. область, 141700 Российская Федерация

*E-mail: vak@cplire.ru

© 2025 г.   М. Д. Дупленковаа, В. А. Калошина, *, Нгуен Тхе Тханьb

ИССЛЕДОВАНИЕ ПЛОСКОЙ СИНФАЗНОЙ 
ДВУМЕРНО-ПЕРИОДИЧЕСКОЙ СВЕРХДИАПАЗОННОЙ 

АНТЕННОЙ РЕШЕТКИ ЩЕЛЕВЫХ РУПОРОВ

УДК 621.396.67

АНТЕННО-ФИДЕРНЫЕ СИСТЕМЫ 

ВВЕДЕНИЕ

В последнее время отмечается повышенный ин-
терес к построению сверхширокополосных (СШП) 
антенн и, в частности, сверхдиапазонных антенных 
решеток [1–16]. Сверхдипазонные антенные ре-
шетки (СДАР) – это новый класс СШП антенных 
решеток (с полосой частот более 10:1), т. е. пере-
крывающих более одного диапазона волн. Такие 
антенные решетки могут найти применение в пер-
спективных многофункциональных многодиапа-
зонных системах радиолокации, радиомониторин-
га и связи.

Технические решения в области двумерно-пери-
одических СДАР основаны на применении в каче-
стве излучающего элемента щелевых [1, 5, 6, 10, 11],  
поликонических [2] и ТЕМ-рупоров с металлиза-
цией межрупорного пространства [3, 4, 7–9, 12–15]. 
При этом проведены исследования как плоских  
[1, 3–13, 16], так и цилиндрических решеток [2, 14, 15].

В  работе [16] исследованы бесконечные син-
фазные решетки с  различными типами элемен-
тов и  законами изменения волнового сопротив-
ления и показано, что их согласование полностью 

определяется законом изменения волнового сопро-
тивления и не зависит от конструкции элемента ре-
шетки. При этом элемент с линейным изменением 
волнового сопротивления, который практически 
реализуется в случае классического (регулярного) 
ТЕМ-рупора, обеспечивает наихудшее согласова-
ние, а наилучшее согласование обеспечивает эле-
мент с изменением волнового сопротивления по 
закону Клопфенштейна.

Следует также отметить, что в цитируемых рабо-
тах, за исключением [12, 13, 15], рассмотрены СДАР 
без делителей мощности, что позволяет обеспечить 
их функционирование только в цифровом варианте. 
При этом исследовались решетки только с плоскими 
экранами, а в работах [12, 13] исследовалась модель 
64-элементной решетки в виде 32-элементной ре-
шетки (8 × 4) над идеально проводящей плоскостью.

Целью данной работы является исследование 
плоских СДАР с элементами в виде щелевых ру-
поров, оптимальным законом изменения волново-
го сопротивления и двумя вариантами построения 
экрана, в т. ч. исследование
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– влияния на согласование размера периода ре-
шетки по двум координатам,

– влияния на согласование входного и выход-
ного сопротивления, а  также длины элемента 
решетки,

– влияния на согласование решеток типа пита-
ющей линии,

– влияния на согласование решеток двух типов 
экрана,

– характеристик излучения конечных решеток,
– разработка и моделирование делителя мощно-

сти на 64 канала,
– исследование характеристик согласования 

и излучения 64 элементной решетки с делителем.

1. ВЛИЯНИЕ ПАРАМЕТРОВ,  
ФОРМЫ ЭКРАНА И ЧИСЛА ЭЛЕМЕНТОВ  

НА СОГЛАСОВАНИЕ БЕСКОНЕЧНОЙ 
РЕШЕТКИ

Выберем элемент решетки в виде щелевого ру-
пора, достоинством которого является неизмен-
ный размер по одной из координат, а затем про-
ведем синтез геометрии рупора в  соответствии 
с процедурой, описанной в [16]. Закон изменения 
импеданса Z от продольной координаты рупора z 
выбираем в виде закона Клопфенштейна, обеспе-
чивающий наибольшую ширину полосы согласо-
вания по заданному уровню коэффициента отра-
жения (КО):
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где Z1, Z2 – импедансы на входе и выходе элемен-
та бесконечной решетки, L – длина элемента, I1 – 
модифицированная функция Бесселя 1‑го порядка, 
U(x) – функция Хевисайда, а параметр А выбирает-
ся из условия максимально допустимого коэффи-
циента отражения в полосе частот. В случае зада-
ния этого уровня равным –10 дБ A = 1.59.

Для определения геометрии ТЕМ-рупора по за-
висимости его импеданса от продольной коорди-
наты воспользуемся результатами работы [4], где 
эта связь найдена с использованием численного 
моделирования методом Галеркина. Отметим, что 
в общем случае каждому значению импеданса со-
ответствует континуум значений взаимосвязанных 
параметров – ширины проводников w(z) и вели-
чины зазора между ними h(z), т. е. каждому значе-
нию импеданса соответствует бесконечное число 

вариантов геометрии рупора. В исследуемом вари-
анте щелевого рупора ширина проводника остает-
ся постоянной (w(z) = w(0)), а величина щели h(z) 
меняется вдоль элемента.

Расчет КО бесконечной решетки проведем пу-
тем электродинамического моделирования мето-
дом конечных элементов (МКЭ) в программной 
среде ANSYS HFSS. В синфазном режиме возбуж-
дения решетки из элементов с двумя плоскостями 
симметрии анализ бесконечной антенной решетки 
сводится к анализу одного периода (канала Флоке), 
на границах которого установлены электрические 
и магнитные стенки (рис. 1).

Порт канала Флоке в данном случае является 
моделью полубесконечной щелевой линии, обра-
зованной проводниками прямоугольного сечения.

Для элемента длиной L = 150 мм проведем ис-
следование зависимости согласования решетки от 
периода, выходного импеданса и импеданса пита-
ющей линии. Рассмотрим следующий варианты:

– период 15 × 15 мм, входное сопротивление 
питающей линии 100 Ом, волновое сопротивле-
ние в канале Флоке от точки z = 0 до точки z = 150 
меняется от 100 до 376 Ом;

– период 10 × 15 мм, входное сопротивление 
питающей линии 100 Ом, волновое сопротивле-
ние в канале Флоке от точки z = 0 до точки z = 150 
меняется от 100 до 251 Ом;

– период 15 × 15  мм, входное сопротивле-
ние питающей линии 50 Ом, волновое сопро-
тивление в канале Флоке от точки z = 0 до точки  
z = 150 меняется от 50 до 376 Ом;

– период 10 × 15  мм, входное сопротивле-
ние питающей линии 50 Ом, волновое сопро-
тивление в канале Флоке от точки z = 0 до точки  
z = 150 меняется от 50 до 251 Ом.

Результаты расчета, представленные на рис.  2, 
подтверждают очевидные соображения, что для за-
данной длины рупора наименьшая нижняя частота 
согласования (0.31 ГГц) обеспечивается при перепа-
де волнового сопротивления от 100 до 251 Ом, а наи-
большая (0.62 ГГц) – при перепаде от 50 до 376 Ом.

Для исследования влияния на согласование ре-
шетки типа питающей линии рассмотрим возбуж-
дение канала Флоке двухпроводной полосковой 
линией. Электродинамическая модель в этом слу-
чае содержит два волновых порта на концах канала 
Флоке и один сосредоточенный порт, расположен-
ный между двумя проводниками полосковой ли-
нии (рис. 3).

Выберем ширину полосковой линии в соответ-
ствии с необходимым волновым сопротивлением 
и найдем частотные характеристик КО для пере-
численных выше вариантов бесконечной решетки 
(рис. 4).
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Рис. 1. Канал Флоке для синфазной решетки щелевых рупоров: изометрия (а) и поперечное сечение (б).
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Рис. 2. Частотная зависимость коэффициента отражения бесконечных решеток для модели, представленной на рис. 1:  
с периодом 15 мм ×15 мм и входным сопротивлением 50 Ом (кривая 1) и 100 Ом (кривая 3); с периодом 10 мм ×15 мм 
и входным сопротивлением 50 Ом (кривая 2) и100 Ом (кривая 4).



РАДИОТЕХНИКА  И  ЭЛЕКТРОНИКА        том   70       № 2         2025

120	 ДУПЛЕНКОВА и др.

Полученные характеристики в области низких 
частот близки к результатам для возбуждения ще-
левой линией (для перепада волнового сопротивле-
ния от 100 до 251 Ом нижняя частота согласования 
0.3 ГГц, а для перепада от 50 до 376 Ом – 0.6 ГГц).  
В области высоких частот отмечаем рост КО, что 
объясняется частотной зависимостью стыка поло-
сковой линии с щелевым рупором.

На рис. 5 представлены частотные зависимости 
КО бесконечной решетки в случае возбуждения 
сосредоточенным портом.

Зависимости показывают, что согласование 
в нижней части диапазона зависит от длины элемен-
та. Были исследованы элементы с входным сопро-
тивлением элемента 50 Ом, периодом 15 мм × 15 мм  
и длинами L = 100, 150 и 200 мм, при этом нижняя 
частота согласования составляет соответственно 
0.91, 0.6 и 0.48 ГГц. Таким образом для бесконеч-
ной решетки возрастание длины элемента приво-
дит к расширению частотного диапазона за счет 
снижения нижней рабочей частоты.

2. ИССЛЕДОВАНИЕ КОНЕЧНЫХ РЕШЕТОК

Перейдем к анализу решеток из 64, 144 и 256 
элементов с  плоским и  П-образным экраном 
(рис. 6), каждая из которых возбуждается идеаль-
ным синфазным делителем мощности с полоско-
выми выходами.

Частотные зависимости КО на входе делителя 
мощности для решеток из 64, 144 и  256 элемен-
тов с периодом 15 × 15 мм и входным волновым 
сопротивлением 50 Ом с плоским и П-образным 
экранами представлены на рис. 7.

На рисунке видно, что нижняя частота согла-
сования 64-элементной решетки выше, а  у  128 
и 256-элементных решеток – ниже, чем у беско-
нечной. При этом максимумы КО в полосе согла-
сования (до 12 ГГц) у конечных решеток меньше, 
чем у бесконечной.
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Рис. 3. Модель бесконечной решетки, возбуждение сосредоточенным портом.
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Рис. 4. Частотная зависимость коэффициента отра-
жения бесконечных решеток для модели, представ-
ленной на рис. 3: с периодом 15 мм ×15 мм и входным 
сопротивлением 50 Ом (кривая 1) и 100 Ом (кривая 3); 
с периодом 10 мм ×15 мм и входным сопротивлением 
50 Ом (кривая 2) и100 Ом (кривая 4).
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Рис. 5. Частотная зависимость коэффициента отражения бесконечной решетки для L = 100 (1), 150 (2), 200 (3) мм.
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Рис. 6. 256-элементная синфазная антенная решетка: (а) – с плоским экраном, (б) – с П-образным экраном.
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Рис. 7. Частотная зависимость коэффициента отражения для решеток с периодом 15×15 мм и плоским экраном (а), 
П-образным экраном (б). Кривые 1–4 соответствуют количеству элементов решетки: 64, 144, 256, ∞. Входное сопро-
тивление во всех случаях равно 50 Ом.
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На рис. 8 представлены частотные зависимости 
КО 64-элементных решеток со плоским и П-образ-
ным экранами.

На рисунке видно, что в отличие от бесконеч-
ных, 64-элементные решетки с периодом 15 × 15 мм 
имеют существенно меньшую нижнюю частоту  
(0.85 и 0.92 ГГц для кривых 3 и 1 соответственно), 
чем у решеток с периодом 10 ×15 мм (1.24 и 1.33 ГГц  
для кривых 2 и 4) вне зависимости от входного со-
противления. Далее рассматриваем СВАР только 
с периодом 15 × 15 мм.

На рис.  9 видно, что 64-элементные решетки 
с длиной элемента 100 мм имеют существенно мень-
шую нижнюю частоту (0.51 ГГц для кривой 1), чем 
у решеток с длиной 150 мм и 200 мм (0.84 и 0.94 ГГц 
для кривых 2 и 3 соответственно). Далее рассматри-
ваем СВАР только с длиной элемента 100 мм.

Диаграммы направленности 64-элементной решет-
ки с плоским и П-образным экранами на частотах 0.5, 
5, 9, 11 ГГц представлены на рис. 10, 11, соответствен-
но, период 15 × 15 мм, длина элемента 100 мм.

Диаграммы направленности 256-элементной 
решетки с плоским и П-образным экранами на ча-
стотах 0.5, 5, 9, 11 ГГц представлены на рис. 12, 13 
соответственно, период 15 × 15 мм, длина элемента 
100 мм.
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Рис. 8. Частотная зависимость коэффициента отраже-
ния для решеток с 64-элементами и плоским экраном (а), 
П-образным экраном (б). Кривые 1 и 3 соответствуют 
периоду решетки 15 мм × 15мм и входному сопротив-
лению 50 и  100 Ом; кривые 2 и  4 – периоду решетки  
15 мм × 15 мм и входному сопротивлению 50 и 100 Ом.
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Рис. 9. Частотная зависимость коэффициента отраже-
ния для решеток с 64-элементами с периодом 15 мм × 
× 15 мм и плоским экраном (а), П-образным экраном 
(б) при различной длине элемента L: 100 (1), 150 (2) 
и 200 мм (3).
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Рис. 10. Диаграммы направленности 64-элементной 
синфазной решетки с плоским экраном в Е-плоско-
сти (а) и Н-плоскости (б) на частотах 0.5 (1), 5 (2),  
9 (3) и 11 (4) ГГц.
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Частотные зависимости КУ и отношения впе-
ред-назад (R) для 64- и 256-элементной синфазной 
решеток с плоским экраном и с П-образным экра-
ном представлены на рис. 14, 15.

На рис. 15 видно, что уровень отношения из-
лучения вперед/назад для решетки с  П-образ-
ным экраном выше, чем для варианта с плоским 
экраном.

С учетом полученных результатов для дальней-
ших исследований выбираем решетку из 64-х (8 × 8)  

щелевых рупоров с  системой питания и  следую-
щими параметрами: входной импеданс Zвх = 50 Ом,  
W = 3.95 мм, h = 0.767 мм, L = 100 мм, Px = 15 мм, 
Py = 15 мм.

Общий вид решетки с системой питания пока-
зан на рис. 16.

Позади решетки на расстоянии 263 мм от входа 
ТЕМ-рупоров расположен плоский металлический 
экран размером 135 × 135 мм (рис. 16а) или П-об-
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Рис. 11. Диаграммы направленности 64-элементной синфазной решетки с П-образным экраном в Е-плоскости (а)  
и Н-плоскости (б) на частотах 0.5 (1), 5 (2), 9 (3) и 11 (4) ГГц.
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Рис. 12. Диаграммы направленности 256-элементной синфазной решетки с плоским экраном в Е-плоскости (а)  
и Н-плоскости (б) на частотах 0.5 (1), 5 (2), 9 (3) и 11 (4) ГГц.
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Рис. 13. Диаграммы направленности 256-элементной синфазной решетки с П-образным экраном в Е-плоскости (а) 
и Н-плоскости (б) на частотах 0.5 (1), 5 (2), 9 (3) и 11 (4) ГГц.
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разный экран с габаритными размерами 135 × 135 × 
× 363 мм (рис. 16б).

3. ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК 
СИСТЕМЫ ПИТАНИЯ

При построении системы питания использовал-
ся принцип, который описан в работах [12, 13, 15],  
т.е система питания состоит из двух частей (рис. 16). 
Первая из них представляет собой последователь-
ный делитель мощности на коаксиальной линии, 
вторая – параллельный – на полосковых линиях. 
Отличие от системы питания в работах [12, 13, 15]  
заключается в числе выходов. У делителя на коак-
сиальной линии – 8 выходов, а у делителя на поло-
сковых линиях 64.

Продольное сечение и схема восьмиканального 
делителя мощности на коаксиальной линии при-
ведено на рис. 17.

Последовательный делитель мощности (рис. 17) 
имеет вход 0 с волновым сопротивлением 50 Ом, 
восемь выходов 1–8 с волновыми сопротивления-
ми 6.25 Ом и обеспечивают равномерное синфаз-
ное деление мощности на выходах. Каждый выход 
делителя мощности на коаксиальной линии соеди-
нен с входом восьмиканального параллельного де-
лителя мощности на симметричной двухпроводной 
полосковой линии. Восьмиканальный параллель-
ный делитель мощности (рис. 18) на симметрич-
ной двухпроводной полосковой линии со входом 0 
с волновым сопротивления 6.25 Ом и восемью вы-
ходами 1–8 с волновыми сопротивлениями 50 Ом 
также обеспечивает равномерное синфазное деле-
ние мощности на выходе. В итоге получена система 
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Рис. 15. Частотные зависимости отношения излу-
чения вперед-назад 64-элементной (кривые 1, 2) 
и  256-элементной синфазной решетки (кривые 3, 4) 
с  различными экранами. Кривые 1, 3 соответствуют 
П-образному экрану, а кривые 2, 4 – плоскому экрану.
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Рис. 16. Антенная решетка с делителем: (а) – с плоским экраном, (б) – с П-образным экраном.
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Рис. 14. Частотные зависимости коэффициента уси-
ления 64-элементной (кривые 1, 2) и 256-элементной 
синфазной решетки (кривые 3, 4) с различными экра-
нами. Кривые 1, 3 соответствуют П-образному экрану, 
а кривые 2, 4 – плоскому экрану.
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питания с одним входом и 64 выходами с волно-
вым сопротивлением 50 Ом.

Результаты расчета частотной зависимостей КО 
на входе системы питания с использованием МКЭ 
и метода конечных разностей во временной обла-
сти (МКРВО) показаны на рис. 19.

Видно, что КО в диапазоне частот до 12 ГГц не 
превосходит –10 дБ.

В результате численного моделирования были 
также найдены частотные зависимости модулей 
коэффициентов передачи (КП) (рис.  20) и  фаз 
(рис. 21) на 32 выходах системы питания (рис. 22).

На рис. 20 видно, что величина КП на всех вы-
ходах падает с частотой (в области нижних частот 
составдяет около –15.5 дБ, а в области верхних ча-
стот –16.5 дБ).

Величина фазы (рис. 21) на части выходов рас-
тет в верхней части диапазона частот, оставаясь 
в пределах 30°.

4. ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК 
АНТЕННОЙ РЕШЕТКИ С СИСТЕМОЙ 

ПИТАНИЯ

Численное исследование характеристик антен-
ной решетки с системой питания проведено с ис-
пользованием МКЭ. На рис. 23 представлены за-
висимости КО синфазной антенной решетки от 
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Рис. 17. Коаксиальный делитель мощности; сверху – продольное сечение, снизу – схема.
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Рис. 18. Полосковой делитель мощности; сверху – 
продольное сечение, снизу – схема.
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Рис. 19. Частотная зависимость коэффициента от-
ражения делителя, рассчитанная с использованием 
МКЭ (1) и МКРВО (2).
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Рис. 20. Частотная зависимость коэффициента передачи делителя мощности: выходы 1–8 (а), выходы 9–16 (б), вы-
ходы 17–24 (в), выходы 25–32 (г). Кривые 1: выходы 1, 9, 17, 25; кривые 2: выходы 2, 10, 18, 26; кривые 3: выходы 3, 11, 
19, 27; кривые 4: выходы 4, 12, 20, 28; кривые 5: выходы 5, 13, 21, 29; кривые 6: выходы 6, 14, 22, 30; кривые 7: выходы 
7, 15, 23, 31; кривые 8: выходы 8, 16, 24, 32.
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Рис. 21. Частотная зависимость фаз коэффициентов передачи делителя: выходы 1–8 (а), выходы 9–16 (б), выходы 
17–24 (в), выходы 25–32 (г). Кривые 1: выходы 1, 9, 17, 25; кривые 2: выходы 2, 10, 18, 26; кривые 3: выходы 3, 11, 19, 27;  
кривые 4: выходы 4, 12, 20, 28; кривые 5: выходы 5, 13, 21, 29; кривые 6: выходы 6, 14, 22, 30; кривые 7: выходы 7, 15, 
23, 31; кривые 8: выходы 8, 16, 24, 32.
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частоты. Рассмотрены варианты с  П-образным 
экраном размером 135 × 135 × 363 мм, с плоским 
экраном размером 135 × 135 мм и без экрана.

Видно, что решетка с П-образным экраном со-
гласована по уровню –10 дБ в полосе 0.51…10.3 ГГц  
как и решетка без экрана. Таким образом, нали-
чие П-образного экрана не приводит к ухудшению 
согласования. При этом КО на частотах выше 10.3 
ГГц превышает уровень –10 дБ. Для улучшения 
согласования решетки в этой области частот был 
синтезирован плавный переход от полосковой ли-
нии к щелевому рупору, причем толщина диэлек-
трической подложки в переходе уменьшается до 
нуля по линейному закону (рис. 24), а геометриче-
ские параметры перехода выбраны таким образом, 
чтобы погонный импеданс оставался постоянным 
и равным 50 Ом по всей длине перехода (10 мм).

На рис.  25 приведена рассчитанная с  исполь-
зованием МКЭ частотная зависимость коэффи-
циента отражения решетки с  П-образным экра-
ном и  плавными переходами от полосковых ли-
ний к щелевым рупорам с делителем мощности (1) 
и без делителя мощности (2).

Как видно на рисунке, наличие плавных пере-
ходов улучшает согласование на частотах 10.3–14.5 
решетки без делителя мощности, однако в решетке 
с делителем мощности улучшения не происходит.

На рис. 26, 27 показаны ДН синфазной антен-
ной решетки без плавных переходов с П-образным 
и плоским экраном, соответственно.

На рисунке видно, что боковые лепестки ДН 
в Н-плоскости больше, чем в Е-плоскости.

На рис. 28 представлена частотная зависимость 
КУ и отношения излучения вперед-назад R.

Видно, что отношение вперед-назад для решет-
ки с П-образным экраном выше, чем для варианта 
с плоским экраном за исключением области верх-
них частот, где они близки.
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Рис. 22. Схема выходов системы питания.
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Рис. 23. Частотная зависимость коэффициента отра-
жения решетки с делителем и: П-образным экраном 
(1), плоским экраном (2) , без экрана (3).
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Рис. 24. Плавный переход от полосковой линии к ще-
левому рупору.
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Рис. 25. Частотная зависимость коэффициента отра-
жения решетки с П-образным экраном и плавными 
переходами: без делителя (1), с делителем (2).
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ЗАКЛЮЧЕНИЕ

На основании полученных в работе результатов 
можно сделать следующие выводы.

Методика синтеза с использованием бесконеч-
ной модели и  закона Клопфенштейна позволя-
ет синтезировать конечные СДАР с параметрами, 
близкими к оптимальным.

Зависимости нижней частоты согласования от 
соотношения периодов решетки и длины элемента 
у небольших СДАР (8 × 8) не совпадают с анало-
гичными зависимостями бесконечных и больших 
решеток (12 × 12 и более).

Синтезированная СДАР 8 × 8 элементов с си-
стемой питания обеспечивает полосу частот по 
уровню –10 дБ более 20:1.

Использование экрана П-образной формы 
позволяет увеличить отношение излучения впе-
ред-назад по сравнению с плоским экраном того 
же поперечного сечения.
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Рис. 26. Диаграммы направленности антенной решет-
ки с П-образным экраном в Е-плоскости (а) и Н-пло-
скости (б) на частотах 0.5 (1), 5 (2), 9 (3) и 11 (4) ГГц.
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Рис. 27. Диаграммы направленности антенной решет-
ки с плоским экраном в Е-плоскости (а) и Н-плоско-
сти (б) на частотах 0.5 (1), 5 (2), 9 (3) и 11 (4) ГГц.
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Рис. 28. Частотные зависимости коэффициента усиле-
ния (кривые 1, 2) и отношения излучения вперед-назад 
(кривые 3, 4) 64-элементной синфазной антенной ре-
шетки. Кривые 1, 3 соответствуют П-образному экра-
ну, кривые 2, 4 – плоскому экрану.
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RESEARCH OF A FLAT IN PHASE TWO-DIMENSIONAL-PERIODIC 
OVERRANGE ANTENNA ARRAY OF FLARED NOTCH HORNES
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Using numerical modeling, a study was carried out of the matching and radiation characteristics of a flat 
in-phase two-dimensional - periodic over-band antenna array of flared-notch horns depending on the 
period and length of the array elements, input and output impedance, type of feed lines and screen shape. 
A 64-way power divider with outputs in the form of symmetrical two- strip lines has been developed and 
studied, and an 8 × 8 array of elements with a power divider as a power feed system has been studied. It 
is shown that the array with the U-shaped screen provides an operating frequency bandwidth of more 
than 20:1.

Keywords: antenna arrays, ultra-wideband antennas, over-band antennas


