RAS PhysicsРадиотехника и электроника Journal of Communications Technology and Electronics

  • ISSN (Print) 0033-8494
  • ISSN (Online) 3034-5901

Single-Channel Magnonic Demultiplexer Based on Coupled Laterally Confined Waveguide and Mach-Zehnder Interferometer

PII
10.31857/S0033849425040114-1
DOI
10.31857/S0033849425040114
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 4
Pages
412-417
Abstract
Spin wave propagation in a system consisting of a Mach-Zehnder interferometer (MZI) and a laterally confined waveguide based on yttrium iron garnet is investigated. Micromagnetic simulations show the possibility of using the system as a single-channel demultiplexer for spin-wave signals. It is shown that the distance between the MZI and the laterally confined waveguide, as well as changes in its width, manifest themselves both in the phase shift of the propagating signal and in the coupling efficiency in the interaction area. The demultiplexing characteristics of the structure allow implementing spatially-frequency signal selection. The proposed interconnected waveguide-MZI system demonstrates the foundation for realizing multiple logic operations and can be used in integrated circuits based on magnonic principles.
Keywords
спиновые волны спинтроника магноника латеральные структуры
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
11

References

  1. 1. Flebus B., Grundler D., Rana B. et al. // J. Phys.: Cond. Matt. 2024. V. 36. № 36. P. 363501.
  2. 2. Demidov V.E., Urazhdin S., Anane A. et al. // J. Appl. Phys. 2020. V. 127. № 17. P. 170901.
  3. 3. Thiery N., Naletov V.V., Vila L. et al. // Phys. Rev. B. 2018. V. 97. № 6. P. 064422.
  4. 4. Никитов С.А., Сафин А.Р., Калябин Д.В. и др. // Успехи физ. наук. 2020. Т. 190. № 10. С. 1009.
  5. 5. Kruglyak V.V., Demokritov S.O., Grundler D. // J. Phys. D: Appl. Phys. 2010. V. 43. № 26. P. 264001.
  6. 6. Хивинцев Ю.В., Сахаров В.К., Высоцкий С.Л. и др. // ЖТФ. 2018. Т. 88. № 7. С. 1060.
  7. 7. Sadovnikov A.V., Beginin E.N., Sheshukova S.E. et al. // Phys. Rev. B. 2019. V. 99. № 5. P. 054424.
  8. 8. Cherepanov V., Kolokolov I., L’vov V. // Phys. Reports. 1993. V. 229. № 3. P. 81.
  9. 9. Glass H.L. // Proc. IEEE. 1988. V. 76. № 2. P. 151.
  10. 10. Serrao C.R., Sahu J.R., Ramesha K., Rao C.N.R. // J. Appl. Phys. 2008. V. 104. № 1. P. 016102.
  11. 11. Chumak A.V., Kabos P., Wu M. et al. // IEEE Trans. 2022. V. MAG-58. № 6. Article No. 0800172.
  12. 12. Stancil D.D., Prabhakar A. Spin Waves. N. Y.: Springer, 2009.
  13. 13. Arsad A.Z., Zuhdi A.W.M., Ibrahim N.B., Hannan M.A. // Appl. Sciences. 2023. V. 13. № 2. P. 1218.
  14. 14. Khitun A., Krivorotov I. Spintronics Handbook. Second Edition: Spin Transport and Magnetism / Eds. by E. Y. Tsymbal, I. Zutic. Boca Raton: CRC Press, 2019. V. 3. P. 571.
  15. 15. Csaba G., Papp A., Porod W. // Phys. Lett. A. 2017. V. 381. № 17. P. 1471.
  16. 16. Schneider T., Serga A.A., Leven B. et al. // Appl. Phys. Lett. 2008. V. 92. № 2.
  17. 17. Семенов А.С., Смирнов В.Л., Шмалько А.В. Интегральная оптика для систем передачи и обработки информации. М.: Связь, 1990.
  18. 18. Shastri B.J., Tait A.N., Ferreira de Lima T. et al. // Nature Photonics. 2021. V. 15. № 2. P. 102.
  19. 19. Vogt K., Fradin F.Y., Pearson J.E. et al. // Nature Commun. 2014. V. 5. № 1. P. 3727.
  20. 20. Martyshkin A.A., Davies C.S., Sadovnikov A.V. // Phys. Rev. Appl. 2022. V. 18. № 6. P. 064093.
  21. 21. Davies C.S., Sadovnikov A.V., Grishin S.V. et al. // IEEE Trans. 2015. V. MAG- 51. № 11. Article No. 3401904.
  22. 22. Bracher T., Pirro P., Westermann J. et al. // Appl. Phys. Lett. 2013. V. 102. № 13. P. 132411.
  23. 23. Demidov V.E., Rekers P., Mahrov B., Demokritov S.O. // Appl. Phys. Lett. 2006. V. 89. № 21. P. 212501.
  24. 24. Sadovnikov A.V., Grachev A.A., Sheshukova S.E. et al. // Phys. Rev. Lett. 2018. V. 120. № 25. P. 257203.
  25. 25. Demokritov S.O., Serga A.A., Andre A. et al. // Phys. Rev. Lett. 2004. V. 93. № 4. P. 047201.
  26. 26. Grachev A.A., Sadovnikov A. V., Nikitov S.A. // Nanomaterials. 2022. V. 12. № 9. P. 1520.
  27. 27. Dunaev S.N., Fetisov Y.K. // IEEE Trans. 1995. V. MAG-31. № 6. P. 3488.
  28. 28. Fetisov Y.K., Srinivasan G. // Appl. Phys. Lett. 2006. V. 88. № 14. P. 143503.
  29. 29. Martyshkin A.A., Sadovnikov A.V. // J. Magn. Magn. Mater. 2024. V. 595. Article No. 171644.
  30. 30. Гуревич А.Г., Мелков Г.А. Магнитные колебания и волны. М.: Физматгиз, 1994.
  31. 31. Vansteenkiste A., Leliaert J., Dvornik M. et al. // AIP Advances. 2014. V. 4. № 10. P. 107133.
  32. 32. O’Keeffe T.W., Patterson R.W. // J. Appl. Phys. 1978. V. 49. № 9. P. 4886.
  33. 33. Damon R.W., Eshbach J.R. // J. Phys. Chem. Solids. 1961. V. 19. № 3-4. P. 308.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library