RAS PhysicsРадиотехника и электроника Journal of Communications Technology and Electronics

  • ISSN (Print) 0033-8494
  • ISSN (Online) 3034-5901

Dispersion Characteristics of Spin Waves in a Nanoscale Magnon Crystal

PII
10.31857/S0033849425040108-1
DOI
10.31857/S0033849425040108
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 70 / Issue number 4
Pages
405-411
Abstract
The paper presents the results of a study of the features of spin-wave propagation in a magnon crystal based on a nanoscale ferromagnetic film with a periodic system of grooves on its surface. Micromagnetic modeling was conducted in the MuMax3 environment. It is found that additional hybrid modes form on the dispersion curve of the magnon crystal near each fundamental width mode. The ratio of the ridges-to-grooves width influences the energy distribution among hybrid modes and the cut-off frequency of the fundamental modes. The impact of the ridges-to-grooves width ratio on the formation of forbidden zones based on dispersion and amplitude-frequency characteristics is analyzed. It is shown that the most pronounced forbidden zones occur for larger ridges-to-grooves width ratios. Additionally, increasing the ridges-to-grooves width ratio and deepening the grooves increases the number of expressed Bragg resonance orders.
Keywords
спиновые волны магнонный кристалл запрещённая зона
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
16

References

  1. 1. Гуляев Ю.В., Никитов С.А. // ДАН. Сер. Физика. 2001. Т. 380. С. 469.
  2. 2. Kruglyak V.V., Dvornik M., Mikhaylovskiy R.V. et al. Metamaterial. / Ed. by X.-Y. Jiang. L.: InTechOpen, 2012. P. 341.
  3. 3. Chumak A.V., Serga A.A., Hillebrands B. // J. Phys.: Appl. Phys. 2017. V. 50. № 24. P. 244001.
  4. 4. Frey P., Nikitin A.A., Bozhko D.A. et al. // Commun. Phys. 2020. V. 3. № 1. Article No. 17.
  5. 5. Goto T., Shimada K., Nakamura Y. et al. // Phys. Rev. Appl. 2019. V. 11. № 1. P. 014033.
  6. 6. Chumak A.V., Kabos V.P., Wu M. et al. // IEEE Trans. 2022. V. MAG-58. № 6. Article No. 0800172.
  7. 7. Barman A., Gubbiotti G., Ladak S. et al. // J. Phys.: Cond. Matt. 2021. V. 33. № 41. P. 413001.
  8. 8. Wang Q., Kewenig M., Schneider M. et al. // Nature Electronics. 2020. V. 3. № 12. V. 765.
  9. 9. Sadovnikov A.V., Beginin E.N., Morozova M.A. et al. // Appl. Phys. Lett. 2016. V. 109. № 4. P. 042407.
  10. 10. Wang Zh.K., Zhang V.L., Lim H.S. et al. // ACS Nano. 2010. V. 4. № 2. P. 643.
  11. 11. Bottcher T., Ruhwedel M., Levchenko K.O. et al. // Appl. Phys. Lett. 2022. V. 120. № 10. P. 102401.
  12. 12. Wang Q., Verba R., Heinz B. et al. // arxiv.org/pdf/2207.01121.
  13. 13. Sheshukova S.E., Beginin E.N., Sadovnikov A.V. et al. // IEEE Magnetics Lett. 2014. V. 5. Article No. 3700204.
  14. 14. Дроздовский А.В., Черкасский М.А., Устинов А.Б. и др. // Письма в ЖЭТФ. 2010. Т. 91. № 1. С. 17.
  15. 15. Ustinov A.B., Kalinikos B.A., Demidov V.E., Demokritov S.O. // Phys. Rev. B.2010. V. 81. № 18. P. 180406.
  16. 16. Morozova M.A., Lobanov N.D., Matveev O.V. et al. // J. Magn. Magn. Mater. 2023. V. 584. P. 171051.
  17. 17. Collet M., Gladii O., Evelt M. et al. // Appl. Phys. Lett. 2017. V. 110. № 9. P. 092408.
  18. 18. Evelt M., Demidov V.E., Bessonov V. // Appl. Phys. Lett. 2016. Т. 108. № 17. P. 172406.
  19. 19. Morozova M.A., Matveev O.V., Romanenko D.V. et al. // Phys. Rev. B. 2024. V. 110. № 10. P. 104408.
  20. 20. Morozova M.A., Matveev O.V., Markeev A.M. et al. // Phys. Rev. B. 2023. V. 108. № 17. P. 174407.
  21. 21. Wang Q., Rippo P., Verba R. et al. // Science Advances. 2018. V. 4. № 1. P. e1701517.
  22. 22. Gruszecki P., Kasprzak M., Serebryannikov A.E. et al. // Scientific Reports. 2016. V. 6. Article No. 22367.
  23. 23. Qin H., Hamalainen S.J., Arjas K. et al. // Phys. Rev. B. 2018. V. 98. № 22. P. 224422.
  24. 24. Goto T., Yoshimoto T., Iwamoto B. et al. // Scientific Reports. 2019. V. 9. Article No. 16472.
  25. 25. Wang Q., Chumak A.V., Pirro P. // Nature Commun. 2021. V. 12. № 1. P. 2636.
  26. 26. Wojewoda O., Holobradek J., Pavelka D. et al. // Appl. Phys. Lett. 2024. V. 125. № 13. P. 132401.
  27. 27. Sadovnikov A.V., Beginin E.N., Odincov S.A. et al. // Appl. Phys. Lett. 2016. V. 108. № 17. P. 172411.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library