RAS PhysicsРадиотехника и электроника Journal of Communications Technology and Electronics

  • ISSN (Print) 0033-8494
  • ISSN (Online) 3034-5901

Neuromorphic decoding of sample image representations by the boundary-consistent interpolation method

PII
10.31857/S0033849424120064-1
DOI
10.31857/S0033849424120064
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 12
Pages
1183-1190
Abstract
The paper discusses methods for encoding and decoding large amounts of data using a neuromorphic model based on known neuromechanisms for the perception of visual information. Known mechanisms of the visual system, such as aggregation of counts by receptive fields, central-lateral inhibition, etc., have been studied. A decoding model has been developed that implements the function of simple cells of the primary visual cortex responsible for spatial perception of stimulus contrasts. The proposed decoding model makes it possible to restore local boundaries of objects in an image, while improving the visual quality of images in comparison with the quality of restoration with classical bilinear interpolation.
Keywords
нейроморфные системы выборочное представление нейронное кодирование система рецептивных полей адаптивная интерполяция
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. Lu Z., Huang D., Bai L. et al. // arXiv preprint arXiv:2304.13023. 2023. https://doi.org/10.48550/arXiv.2304.13023
  2. 2. Pinkston J. T. // IEEE Trans. 1969. V. IT-15. № 1 P. 66. https://doi.org/10.1109/TIT.1969.1054274
  3. 3. Milner D., Goodale M. The Visual Brain in Action. Oxford: Univ. Press, 2006. https://doi.org/10.1093/acprof: oso/9780198524724.001.0001
  4. 4. Antsiperov V., Kershner V. // Pattern Recognition Applications and Methods, ICPRAM 2021–2022. Lecture Notes in Computer Sci. P. 13822. Cham: Springer, 2023. https://doi.org/10.1007/978-3-031-24538-1_3
  5. 5. Yang M., Sun X., Jia F. et al. // Polymers. 2022. V. 14. № 10. Р. 2019. https://doi.org/10.3390/polym14102019
  6. 6. Keeler H. P. Notes on the Poisson Point Process. Technical Report. Berlin: Weierstrass Inst. 2016. 36 p. https://hpaulkeeler.com/wp-content/uploads/2018/08/PoissonPointProcess.pdf
  7. 7. Antsiperov V. // Proc. 11th Int. Conf. on Pattern Recognition Applications and Methods – ICPRAM. 3–5 Feb. 2022. Setúbal: SciTePress – Science and Technology Publ., 2022. P. 354. https://doi.org/10.5220/0010836800003122
  8. 8. Latecki L. J., Lakamper R., Eckhardt T. // Proc. IEEE Conf. Computer Vision and Pattern Recognition, CVPR-2000. Hilton Head Island. 15 Jun. N.Y.: IEEE, 2000. P. 424. https://doi.org/10.1109/CVPR.2000.855850
  9. 9. Hubel D. H., Wiesel T. N. Brain and Visual Perception: The Story of a 25-year Collaboration. Oxford: Univ. Press, 2004. https://doi.org/10.1016/0001-6918 (64)90136-2
  10. 10. Keller A. J., Roth M. M., Scanziani M. // Nature. 2020. V. 582. № 7813. Р. 545. https://doi.org/10.1038/s41586-020-2319-4
  11. 11. Hoon M., Okawa H., Santina L. D., Wong R. O. // Progress in Retinal and Eye Research. 2014. V. 42. Р. 44. https://doi.org/10.1016/j.preteyeres.2014.06.003
  12. 12. Antsiperov V. // Proc. 12th Int. Conf. on Pattern Recognition Applications and Methods (ICPRAM 2023). Lisbon. 22–24 Feb. 2023. Setúbal: SciTePress – Science and Technology Publ., 2023. P. 517. https://doi.org/10.5220/0011792800003411
  13. 13. Fish J., Wagner G. J., Keten S. // Nature Mater. 2021. V. 20. № 6. Р. 774. https://doi.org/10.1038/s41563-020-00913-0
  14. 14. Ranstam J., Cook J. A. // J. British Surgery. 2018. V. 105. № 10. Р. 1348. https://doi.org/10.1002/bjs.10895
  15. 15. Tam W. S., Kok C. W., Siu W. C. // J. Electron. Imaging. 2010. V. 19. № 1. Р. 013011. https://doi.org/10.1117/1.3358372
  16. 16. Marr D., Hildreth E. // Proc. Royal Society of London. Ser. B. Biol Sci. 1980. V. 207. № 1167. P. 187. https://doi.org/10.1098/rspb.1980.0020. PMID6102765.
  17. 17. Yu S., Zhang R., Wu Sh. et al. // Biomedical Engineering Online. 2013. V. 12. Р. 1. https://doi.org/10.1186/1475-925X-12-102
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library