RAS PhysicsРадиотехника и электроника Journal of Communications Technology and Electronics

  • ISSN (Print) 0033-8494
  • ISSN (Online) 3034-5901

Surface electromagnetic fields of cladding modes of coreless optical fibers

PII
10.31857/S0033849424120022-1
DOI
10.31857/S0033849424120022
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 12
Pages
1150-1161
Abstract
The exact hybrid modes of a coreless optical fiber are calculated. Spatial distributions of electromagnetic fields near the cladding surface are obtained. A comparison of radial, azimuthal, and longitudinal field components near the cladding surface is performed for the hybrid exact modes and approximate linearly polarized (LP) modes. The polarization characteristics of the modes are studied taking into account the longitudinal field component depending on the type of hybrid modes and mode numbers. The combination of hybrid modes forms modes similar to LP modes, which have an almost uniform linear polarization inside the fiber far from the cladding surface. It is shown that under the cladding surface the polarization of LP-like modes is also linear, but significantly non-uniform in azimuthal angle with a deviation of the polarization angle by up to 21о from the main direction of mode polarization. In addition, the role of the longitudinal field component near the cladding surface increases significantly, where its value can exceed the values of the transverse components.
Keywords
оптическое волокно волоконная мода оболочечная мода поверхностное поле гибридные моды
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
13

References

  1. 1. Волоконно-оптические датчики / Под ред. Э. Удда. М.: Техносфера, 2008.
  2. 2. Chiang K. S., Liu Y., Liu Q., Rao Y. // Photonic Sensors. 2011. V. 1. № 3. P. 204.
  3. 3. Wu Z., Liu B., Zhu J., Liu J. et al. // Chinese Opt. Lett. 2020. V. 18. № 6. P. 061201.
  4. 4. Tripathi S. M., Kumar A., Varshney R. K. et al. // J. Lightwave Technol. 2009. V. 27. № 13. P. 2348.
  5. 5. Kogelnik H., Schmidt R. // IEEE J. Quantum Electronics. 1976. V. 12. № 7. P. 396.
  6. 6. Chiang K. S., Ng M. N., Liu Y., Li S. // Proc. Lasers Electro-Opt. Soc. 2000 Ann. Meeting, 15–16 Nov. Rio Grande. 2000. P. 836.
  7. 7. Chan F. Y.M., Chiang K. S. // J. Lightwave Technol. 2006. V. 24. № 2. P. 1008.
  8. 8. Kim M. J., Jung Y. M., Kim B. H. et al. // Opt. Express. 2007. V. 15. № 17. P. 10855.
  9. 9. Jung Y., Brambilla G., Murugan G. S., Richardson D. J. // Appl. Phys. Lett. 2011. V. 98. № 2. 021109.
  10. 10. Hong Z., Li X., Zhou L. et al. // Opt. Express. 2011. V. 19 № 5. P. 3854.
  11. 11. Wu Q., Semenova Y., Ma Y. // J. Lightwave Technol. 2011. V. 29. № 24. P. 3683.
  12. 12. Baiad M. D., Gagné M., Lemire-Renaud S. et al. // Opt. Express. 2013. V. 21. № 6. P. 6873.
  13. 13. Cai Z., Liu F., Guo T. et al. // Opt. Express. 2015. V. 23. № 16. P. 20971.
  14. 14. Schlangen S., Bremer K., Zheng Y. et al. // P. Soc. Photo-opt. Ins. 2018. V. 10681. 1068116.
  15. 15. Zhang W., Huang L., Gao F. et al. // Opt. Lett. 2012. V. 37. P. 1241.
  16. 16. Zhang C., Chiang K. S. // Opt. Eng. 2012. V. 51 № 7. 075001.
  17. 17. Иванов О. В., Никитов С. А., Гуляев Ю. В. // Успехи физ. наук. 2006. Т. 49. № 2. С. 167.
  18. 18. Lam P. K., Stevenson A. J., Love J. D. // Electron. Lett. 2000. V. 36. № 11. P. 967.
  19. 19. Bachim B. L., Ogunsola O. O., Gaylord T. K. // Opt. Lett. 2005. V. 30. № 16. P. 2080.
  20. 20. Chan F. Y. M., Kim M. J., Lee B. H. // J. Opt. Soc. Korea. 2005. V. 9. № 4. P. 135.
  21. 21. Yukun B., Kin S. C. // J. Lightwave Technol. 2005. V. 23 № 12. P. 4363.
  22. 22. Liu Y., Chiang K. S., Rao Y. J. et al. // Opt. Express. 2007. V. 15. № 26. P. 17645.
  23. 23. Xue W., Lu M., Jun Y., Yuan L. // Acta Optica Sinica. 2010. V. 30. № 12. P. 3391.
  24. 24. Abrishamian F., Morishita K. // IEICE T. Electron. 2015. V. 98. № 7. P. 512.
  25. 25. Юсупова Л. И., Иванов О. В. // Радиотехника. 2019. № 9. С. 74.
  26. 26. Xu X., Ouyang X., Zhou A. // Opt. Commun. 2019. V. 445. P. 1.
  27. 27. Бутов О. В., Томышев К. А., Нечепуренко И. А. // Успехи физ. наук. 2022. Т. 192. С. 1385.
  28. 28. Томышев К. А., Е. И. Долженко E. B., Бутов О. В. // Квант. электроника. 2021. Т. 51. № 12. С. 1113.
  29. 29. Tomyshev K. A., Tazhetdinova D. K., Manuilovich E. S., Butov O. V. // J. Appl. Phys. 2018. V. 124. № 113106.
  30. 30. Tomyshev K. A., Tazhetdinova D. K., Manuilovich E. S., Butov O. V. // Phys. Status Solidi. A. 2018. № 1800541.
  31. 31. Tomyshev K. A., Manuilovich E. S., Tazhetdinova D. K. // Sens. Actuators, A. 2020. V. 308. № 112016.
  32. 32. Manuilovich E. S., Tomyshev K. A., Butov O. V. // Sensors. 2019. V. 19. № 4245.
  33. 33. Liu Y., Chiang K. S., Liu Q. // Opt. Express. 2007. V. 15. № 10. P. 6494.
  34. 34. Kim M. J., Chan F. Y. M., Paek U. C., Lee B. H. // Proc. Optical Fiber Comm. Conf. and National Fiber Optic Engineers Conf. 5–10 March. 2006. Anaheim. P. 3.
  35. 35. Han Y. G., Lee S. B., Kim C. S., Jeong M. Y. // Opt. Lett. 2006. V. 31 № 6. P. 703.
  36. 36. Lo Y. L. // Opt. Eng. 2006. V. 45. № 12. Р. 125001.
  37. 37. Kritzinger R., Meyer J., Burger J. // S. Afr. J. Sci. 2011. V. 107. № 5/6. P. 703.
  38. 38. He Y. J., Chen X. Y. // IEEE Trans. 2013. V. NANO-12. № 3. P. 460.
  39. 39. Fang L., Jia H. // Opt. Express. 2014. V. 22. № 10. P. 16621.
  40. 40. Dong X. W., Feng S. C., Lu S. H. et al. // Acta Physica Sinica. 2007. V. 56. № 12. P. 7039.
  41. 41. Liu Q., Chiang K. S., Liu Y. // J. Lightwave Technol. 2008. V. 26. № 18. P. 3277.
  42. 42. Chiang K. S., Chan F. Y. M., Ng M. N. // J. Lightwave Technol. 2004. V. 22. № 5. P. 1358.
  43. 43. Zhang W., Huang L., Gao F., Bo F. // Opt. Express. 2013. V. 21. № 14. P. 1358.
  44. 44. Kawano K., Kitoh T. Introduction to Optical Waveguide Analysis: Solving Maxwell’s Equations and the Schrodinger Equation N. Y.: Wiley. 2001.
  45. 45. Iizuka K. Elements of the Photonics / N.Y.: Wiley. 2002.
  46. 46. Huang W. P. // J. Opt. Soc. Amer. A. 1994. V. 11. № 3. P. 963.
  47. 47. Erdogan T. // J. Opt. Soc. Amer. A. 1997. V. 14. № 8. P. 1760.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library