RAS PhysicsРадиотехника и электроника Journal of Communications Technology and Electronics

  • ISSN (Print) 0033-8494
  • ISSN (Online) 3034-5901

Using an unmanned aerial vehicle for soil moisture remote sensing by means of ultra-wideband electromagnetic impulses

PII
10.31857/S0033849424070025-1
DOI
10.31857/S0033849424070025
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 7
Pages
609-621
Abstract
Under long-time experiments, the possibility of remote sensing of soil moisture with ultra-wideband (UWB) electromagnetic impulses from an unmanned aerial vehicle (UAV) was investigated. The soil surface of test sites with varying degrees of roughness was under fallow in conditions of natural moisture, drying, and periodic harrowing. The soil moisture was found by inverse problem solving, while minimizing the norm of discrepancy between the module of reflection coefficients, which were calculated using the Fresnel formula (for dielectrically homogeneous half-space) and the average values, measured at different hovering heights of the UAV over the sensing test sites. During the experiments from June 12 to September 28, 2022, the achievability of practically significant accuracy of remote sensing of volumetric soil moisture on the test sites in a 6—7 cm topsoil with a standard deviation of less than 4 % (relative to the weighted-drying measurements of soil samples, in-situ collected) was demonstrated. As a result, it was shown that in the frequency range of the sensing impulse from 456 MHz to 1014 MHz, the influence of diffuse scattering of waves on random soil surface roughness (standard deviations of the heights of roughness less than 2 cm) can be neglected within the above-mentioned error in the soil moisture retrieval.
Keywords
Дистанционное зондирование радиолокация беспилотный летательный аппарат сверхширокополосные импульсы влажность почв шероховатость поверхности почвы
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
22

References

  1. 1. Precision Agriculture Evolution, Insights and Emerging Trends/Ed. by Q. Zaman. L.: Acad. Press, 2023.
  2. 2. Gudkov A. G., Agasieva S.V., Sidorov I.A. et al. // Computers and Electronics in Agriculture. 2022. V. 198. № 10. Р. 107076.
  3. 3. Shutko A.M., Golovachev S.P., Novichikhin E.P. et al. // Proc. 2006 IEEE MicroRad. San Juan. 28 Feb — 02 Mar. N.Y.:IEEE, 2006. P. 82.
  4. 4. Egido A., Paloscia S., Motte E. et al. // IEEE J. Select. Topics Appl. Earth Observ. Remote Sensing. 2014. V. 7. № 5. P. 1522.
  5. 5. Wu K., Rodriguez G.A., Zajc M. et al. // Remote Sens Environ. 2019. V. 235. № 111456. Р. 1.
  6. 6. Oh Y., Sarabandi K., Ulaby F. T. // IEEE Trans. 1992. V. GRS-30. № 2. P. 370.
  7. 7. Arcone S.A., Larson R.W. // IEEE Trans. 1988. V. GRS-26. № 1. P. 89.
  8. 8. Cheng Q., Su Q., Binley A. et al. // Water Resources Research. 2023. V. 59. No. e2022WR032621. Р. 1.
  9. 9. Jonard F., Weihermüller L., Vereecken H., Lambot S. // Geophysics. 2012. V. 77. № 1. P. H1.
  10. 10. Jonard F., Weihermuller L., Jadoon K. Z. et al. // IEEE Trans. 2011. V. GRS-49. № 8. P. 2863.
  11. 11. Jonard F., André F., Pinel N. et al. // IEEE Trans. 2019. V. GRS-57. № 10. P. 7671.
  12. 12. Frédéric A., Jonard F., Jonard M. et al. // Remote Sensing. 2019. V. 11. № 7. P. 1.
  13. 13. Landron O., Feuerstein M.J., Rappaport T.S. // IEEE Trans. 1996. V. AP-44. № 3. P. 341.
  14. 14. Muzalevskiy K. // Intern. J. Remote Sensing. 2021. V. 42. № 7. P. 2377.
  15. 15. Lambot S., Antoine M., van den Bosch I. et al. // Vadose Zone J. 2004. V. 3. № 4. P. 1063.
  16. 16. Schmugge T., Wilheit W., Webster Jr., Gloersen P. Remote Sensing of Soil Moisture with Microwave Radiometers-II. NASA Technical Note. № D-8321. Washington: NACA, 1976. 39p. https://ntrs.nasa.gov/api/citations/19760025537/downloads/19760025537.pdf
  17. 17. Brakhasi F., Walker J.P., Ye N. et al. // Sci. Remote Sensing. 2023. V. 7. P. 100079.
  18. 18. Yardim C. et al. // IEEE Trans. 2022. V. GRS-60. № 4300312. P. 1.
  19. 19. Mousavi S., De Roo R., Sarabandi K., England A.W. // IEEE Geosci. Remote Sensing Lett. 2019. V. 16. № 10. P. 1526.
  20. 20. Tran A.P., Bogaert P., Wiaux F. et al. // J. Hydrology. 2015. V. 523. P. 252.
  21. 21. Topp G.C., Davis J.L., Annan A.P. // Water Resour. Res. 1980. V. 16. № 3. P. 574.
  22. 22. Tosti F., Ciampoli L.B., Calvi A. et al. // J. Appl. Geophys. 2013. V. 97. P. 69.
  23. 23. Muzalevskiy K. // IEEE Antennas and Wireless Propagation Lett. 2023. V. 22. № 9. P. 2140.
  24. 24. Yarlequé M. A., Alvarez S., Martínez H.J. et al. // 2017 Int. Conf. on Electromagnetics in Advanced Applications. Verona. 11-17 Sept. 2017. N.Y.: IEEE, 2017. P. 1646.
  25. 25. Музалевский К.В. // Изв. вузов. Радиофизика. 2022. Т. 65. № 8. С. 677.
  26. 26. Mironov V. L., Bobrov P. P., Fomin S. V. // 2013 Int. Siberian Conf. on Control and Communications (SIBCON), Krasnoyarsk. 12-13 Sept. N.Y.: IEEE, 2013. Paper No. 6693613.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library