RAS PhysicsРадиотехника и электроника Journal of Communications Technology and Electronics

  • ISSN (Print) 0033-8494
  • ISSN (Online) 3034-5901

Physical emulation of controlled multipath radio propagation environment

PII
10.31857/S0033849424060097-1
DOI
10.31857/S0033849424060097
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 69 / Issue number 6
Pages
562-573
Abstract
The paper presents a new method for physical modeling of a multipath radio propagation environment with desired properties using a set of software-defined radio units. Using this method the authors conduct an experimental study on the convergence rate of a received multipath radio signal to a Gaussian random process as the number of multipath channel taps rises. The experiments showed that seven or less multipath taps are insufficient for accepting the statistical hypothesis of a Gaussian random process for the received signal, which revises previous theoretical studies. For the case of equal variances of all multipath taps the experiments verified the independence of the signal correlation function on the number of the taps. The obtained experimental data are fitted well to the classical theoretical models of multipath channels.
Keywords
многолучевый канал быстрые замирания случайный процесс вероятностная модель статистический анализ программно-определяемое радио синхронизация
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
11

References

  1. 1. Saunders S.R., Argo-Zavala A. Antennas and Propagation for Wireless Communication Systems. N.Y.: Wiley, 2007.
  2. 2. Кеннеди Р. Каналы связи с замираниями и рассеянием. М.: Сов. радио, 1973.
  3. 3. Пономарев Г.А., Куликов А. М., Тельпуховский Е. Д. Распространение УКВ в городе. Томск: МП “Раско”, 1991.
  4. 4. Parsons J. D. The Mobile Radio Propagation Channel. N.Y.: John Wiley & Sons, 2000.
  5. 5. Patzold M. Mobile Fading Channels. N.Y.: John Wiley & Sons, 2002.
  6. 6. Proakis J.G., Salehi M. Digital Communications. McGraw-Hill, 2008.
  7. 7. Molisch A. F. Wireless Communications. Wiley, 2011.
  8. 8. Blaunstein N. // J. Communications and Networks. 2000. V. 2. № 4. P. 305.
  9. 9. Blaunstein N., Toeltsch M., Laurila J. et al. // IEEE Trans. 2006. V. AP-54. № 10. P. 2902.
  10. 10. Zhang J., Duong T. Q., Marshall A., Woods R. // IEEE Access. 2016. V. 4. P. 614.
  11. 11. Zeng K. // IEEE Commun. Mag. 2015. V. 53. № 6. P. 33.
  12. 12. Hyadi A., Rezki Z., Alouini M.-S. // IEEE Access. 2016. V. 4. P. 6121.
  13. 13. Zhang J., He B., Duong T. Q., Woods R. // IEEE Commun. Lett. 2017. V. 21. № 4. P. 961.
  14. 14. Wallace J.W., Sharma R. K. // IEEE Trans. 2010. V. IFS-5. № 3. P. 381.
  15. 15. Peng Y., Wang P., Xiang W., Li Y. // IEEE Trans. 2017. V. WC-16. № 8. P. 5176.
  16. 16. Рытов С.М., Кравцов Ю. М., Татарский В. И. Введение в статистическую радиофизику. Ч. 2. Случайные поля. М.: Наука, 1978.
  17. 17. Liu H., Yang J., Wang Y. et al. // IEEE Trans. 2014. V. МС-13. № 12. P. 2820.
  18. 18. Bai L., Zhu L., Liu J. et al. // J. Commun. Inform. Networks. 2020. V. 5. № 3. P. 237.
  19. 19. Premnath S.N., Jana S., Croft J. et al. // IEEE Trans. Mob. Comput. 2013. V. 12. № 5. P. 917.
  20. 20. Upadhyay R., Singh S., Trivedi V., Soni A. // Proc. Int. Conf. Adv. Computation and Telecomm. Bhopal. 28–29 Dec. N.Y.: IEEE, 2018. № 8933725.
  21. 21. Gohring M., Schmitz R. // Proc. 2nd World Forum on Internet of Things. Milan. 14–16 December. N.Y.: IEEE, 2015. № 7389145.
  22. 22. Topal O.A., Kurt G. K., Ozbek B. // IEEE Wireless Commun. Lett. 2017. V. 6. № 6. P. 766.
  23. 23. Huth C., Guillaume R., Strohm T., Duplys P. // Computer Networks. 2016. V. 109(1). P. 84.
  24. 24. Leung-Yan-Cheong S., Hellman M. // IEEE Trans. 1978. V. IT-24. № 4. P. 451.
  25. 25. Gopala P.K., Lai L., Gamal El H. // IEEE Trans. 2008. V. IT-54. № 10. P. 4687.
  26. 26. Edman M., Kiayias A., Yener B. // Proc. 4th Eur. Worksh. on System Security. Salzburg. 10 Apr. N.Y.: ACM, 2011. № 8.
  27. 27. Pasolini G., Dardari D. // IEEE Trans. 2015. V. WC-14. № 6. P. 3429.
  28. 28. Edman M., Kiayias A., Tang Q., Yener B. // IEEE Trans. 2016. V. IFS-11. № 8. P. 1796.
  29. 29. He B., Zhou X., Swindlehurst A.L. // IEEE Trans. 2016. V. WC-15. № 10. P. 6913.
  30. 30. Jin H., Huang K., Jin L. et al. // Proc. 4th Int. Conf. on Computer and Comms. Chengdu. 07–10 December. N.Y.: IEEE, 2018. P. 226.
  31. 31. Ji Z., Zhang Y., He Z. et al. // IEEE Wireless Commun. Lett. 2020. V. 9. № 5. P. 693.
  32. 32. Rottenberg F., Nguyen T.-H., Dricot J.-M. et al. // IEEE Trans. 2021. V. TCOM-69. № 3. P. 1868.
  33. 33. Zhu R., Shu T., Fu H. // Wireless Networks. 2021. V. 27. P. 4853.
  34. 34. Rafiq G., Patzold M. // Proc. 20th Int. Symp. Personal, Indoor and Mobile Radio Comms. Tokyo. 13–16 Sept. N.Y.: IEEE, 2009. P. 1103.
  35. 35. Тихонов В. И. Нелинейные преобразования случайных процессов. М.: Радио и связь, 1986.
  36. 36. Rec. ITU-R P. 1407–6. Int. Telecomm. Union, 2017.
  37. 37. Fleury B.H., Tschudin M., Heddergott R. et al. // IEEE J. Sel. Areas Commun. 1999. V. 17. № 3. P. 434.
  38. 38. Chong C.-C., Tan C.-M., Laurenson D. I. et al. // IEEE Trans. 2005. V. AP-4. № 4. P. 1539.
  39. 39. Salmi J., Richter A., Koivunen V. // IEEE Trans. 2009. V. SP-57(4). P. 1538.
  40. 40. Jost T., Wang W., Fiebig U.-C., Perez-Fontan F. // IEEE Trans. 2012. V. AP-60. № 10. P. 4875.
  41. 41. Ghoraishi M., Takada J., Imai T. // IEEE Trans. 2006. V. AP-54. № 11. P. 3473.
  42. 42. Goel K., Adam N. // IEEE Trans. 2012. V. GRS-50. № 6. P. 2355.
  43. 43. Seijo O., Val I., Lopez-Fernandez J.A. // IEEE Access. 2020. V. 8. P. 175576.
  44. 44. Graur O., Islam N., Henkel W. // Proc. Globecom Workshops. Washington. 04–08 Dec. N.Y.: IEEE, 2016. № 7849013.
  45. 45. Левин Б. Р. Теоретические основы статистической радиотехники. М.: Сов. радио, 1969. Кн. 1.
  46. 46. Suzuki H. // IEEE Trans. 1977. V. TCOM-25. № 7. P. 673.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library