ОФНРадиотехника и электроника Journal of Communications Technology and Electronics

  • ISSN (Print) 0033-8494
  • ISSN (Online) 3034-5901

Метод корректировки коэффициентов линейного предсказания для систем цифровой обработки речи со сжатием данных на основе авторегрессионной модели голосового сигнала

Код статьи
10.31857/S0033849424040056-1
DOI
10.31857/S0033849424040056
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 69 / Номер выпуска 4
Страницы
339-347
Аннотация
Рассмотрена проблема искажений авторегрессионной модели голосового сигнала под действием аддитивного фонового шума в системах цифровой обработки речи со сжатием данных на основе линейного предсказания. В частотной области указанные искажения проявляются в ослаблении основных формант, отвечающих за разборчивость речи диктора. Для компенсации формантного ослабления предложено корректировать основные параметры авторегрессионной модели — коэффициенты линейного предсказания. Разработан регулярный метод их корректировки с использованием импульсной характеристики рекурсивного формирующего фильтра. При применении данного метода наряду с амплитудным усилением формант их частόты сохраняются неизменными как фактор узнаваемости голоса диктора. Эффективность метода исследована экспериментально с использованием авторского программного обеспечения. По результатам проведенного эксперимента сделаны выводы о существенном повышении относительного уровня формант в спектре мощности откорректированного голосового сигнала.
Ключевые слова
теория сигналов голосовой сигнал цифровая обработка речи цифровая передача речи спектральный анализ спектральная плотность мощности дискретное спектральное моделирование авторегрессионная модель all-pole model
Дата публикации
17.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
13

Библиография

  1. 1. Rabiner L.R., Schafer R.W. // Foundations and Trends in Signal Processing. 2007. V. 1. № 1–2. P. 1. https://doi.org/10.1561/2000000001
  2. 2. O’Shaughnessy D. // J. Audio. Speech. Music Processing. 2023. V. 8. https://doi.org/10.1186/s13636-023-00274-x
  3. 3. Savchenko V.V. // Radioelectron. Commun. Systems. 2021. V. 64. № 11. P. 592. https://doi.org/10.3103/S0735272721110030
  4. 4. Gibson J. // Information. 2019. V. 10. № 5. 179. https://doi.org/10.3390/info10050179
  5. 5. Chaouch H., Merazka F., Marthon Ph. // Speech Commun. 2019. V. 108. P. 33. https://doi.org/10.1016/j.specom.2019.02.002.
  6. 6. Савченко В.В., Савченко Л.В. // Измерит. техника. 2019. № 9. С. 59. https://doi.org/10.32446/0368-1025it.2019-9-59-64
  7. 7. Candan Ç. // Signal Processing. 2020. V. 166. № 10. Р. 107256. https://doi.org/10.1016/j.sigpro.2019.107256
  8. 8. Semenov V.Yu. // J. Automation and Inform. Sci. 2019. V. 51. № 2. P. 30. https://doi.org/10.1615/JAutomatInfScien.v51.i2.40
  9. 9. Marple S.L. Digital Spectral Analysis with Applications. 2-nd ed. Mineola: Dover Publ., 2019.
  10. 10. Burg J.P. Maximum entropy spectral analysis. PhD Thesis. Stanford Univ., 1975.
  11. 11. Magi C., Pohjalainen J., Bäckström T., Alku P. // Speech Commun. 2009. V. 51. № 5. P. 401. https://doi.org/10.1016/j.specom.2008.12.005
  12. 12. Rout J.K., Pradhan G. // Speech Commun. 2022. V. 144. P. 101. https://doi.org/10.1016/j.specom.2022.09.004
  13. 13. Deng F., Bao Ch. // Speech Commun. 2016. V. 79. P. 30. https://doi.org/10.1016/j.specom.2016.02.006
  14. 14. Савченко В.В., Савченко А. В. // Измерит. техника. 2020. № 11. С. 65. https://doi.org/10.32446/0368-1025it.2020-11-65-72
  15. 15. Савченко В.В. // РЭ. 2023. Т. 68. № 2. С. 138. https://doi.org/10.31857/S0033849423020122
  16. 16. Kathiresan Th., Maurer D., Suter H., Dellwo V. // J. Acoust. Soc. Amer. 2018. V. 143. № 3. P. 1919. https://doi.org/10.1121/1.5036258
  17. 17. Ngo Th., Kubo R., Akagi M. // Speech Commun. 2021. V. 135. P. 11. https://doi.org/10.1016/j.specom.2021.09.004
  18. 18. Palaparthi A., Titze I. R. // Speech Commun. 2020. V. 123. P. 98. https://doi.org/10.1016/j.specom.2020.07.003
  19. 19. Sadasivan J., Seelamantula Ch.S., Muraka N.R. // Speech Commun. 2020. V. 116. P. 12. https://doi.org/10.1016/j.specom.2019.11.001
  20. 20. Gustafsson Ph.U., Laukka P., Lindholm T. // Speech Commun. 2023. V. 146. P. 82. https://doi.org/10.1016/j.specom.2022.12.001
  21. 21. Ito M., Ohara K., Ito A., Yano M. // Proc. Interspeech. 2010. V. 2490. https://doi.org/10.21437/Interspeech.2010-669
  22. 22. Arun-Sankar M.S., Sathidevi P. S. // Heliyon. 2019. V. 5. № 5. Р. e01820. https://doi.org/10.1016/j.heliyon.2019.e01820
  23. 23. Narendra N.P., Alku P. // Speech Commun. 2019. V. 110. P. 47. https://doi.org/10.1016/j.specom.2019.04.003
  24. 24. Alku P., Kadiri S.R., Gowda D. // Computer Speech & Language. 2023. V. 81. № 10. Р. 101515. https://doi.org/10.1016/j.csl.2023.101515
  25. 25. Sadok S., Leglaive S., Girin L. et al. // Speech Commun. 2023. V. 148. P. 53. https://doi.org/10.1016/j.specom.2023.02.005
  26. 26. Nguyen D.D., Chacon A., Payten Ch.L. et al. // Int. J. Language & Commun. Disorders. 2022. V. 57. № 2. P. 366. https://doi.org/10.1111/1460-6984.12705
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека