RAS PhysicsРадиотехника и электроника Journal of Communications Technology and Electronics

  • ISSN (Print) 0033-8494
  • ISSN (Online) 3034-5901

Development and research of a slow-wave system for a miniature W-band multibeam traveling wave lamp

PII
10.31857/S0033849423100182-1
DOI
10.31857/S0033849423100182
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 10
Pages
992-997
Abstract
The results of the development of a meander-type slow-wave system (SS) with metal supports for a miniature high-power W-band traveling wave lamp (TWT) with two ribbon electron beams are presented. Using a three-dimensional finite element software package, the electrodynamic parameters of the GS were studied. A two-section model of a TWT amplifier with a discontinuity has been developed to prevent self-excitation. Three-dimensional modeling of electron-wave interaction was carried out. It was found that with a total beam current of 200 mA in linear mode, the gain exceeds 30 dB in the frequency band 95.4...97.75 GHz, and the output power in saturation mode reaches 120 W. A technology for manufacturing SS based on laser microprocessing of thin copper plates is proposed. Test samples of the SS were manufactured and verified using optical and scanning microscopy.
Keywords
meander-type slow-wave system W-band traveling wave lamp,electron-wave interaction
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
13

References

  1. 1. Paoloni C., Gamzina D., Letizia R. et al. // J. Electromag. Waves Appl. 2021. V. 35. № 5. P. 567. https://doi.org/10.1080/09205071.2020.1848643
  2. 2. Shao W., Xu D., Wang Zh. et al. // Phys. Plasmas. 2019. V. 26. № 6. P. 063106. https://doi.org/10.1063/1.5096331
  3. 3. Lu Z., Ding K., Wen R. et al. // IEEE Electron Dev. Lett. 2020. V. 41. № 2. P. 284. https://doi.org/10.1109/LED.2019.2963686
  4. 4. Dong Y., Chen Z., Li X. et al. // J. Electromag. Waves Appl. 2020. V. 34. № 16. P. 2236. https://doi.org/10.1080/09205071.2020.1807413
  5. 5. Wang H., Wang Zh., Li X. et al. // Phys. Plasmas. 2018. V. 25. № 6. P. 063113. https://doi.org/10.1063/1.5023776
  6. 6. Torgashov R.A., Rozhnev A.G., Ryskin N.M. // IEEE Trans. 2022. V. ED-69. № 3. P. 1396. https://doi.org/10.1109/TED.2022.3141337
  7. 7. Ryskin N.M., Torgashov R.A., Starodubov A.V. et al. // J. Vac. Sci. Technol. B. 2021. V. 39. № 1. P. 013204. https://doi.org/10.1116/6.0000716
  8. 8. Стародубов А.В., Ножкин Д.А., Расулов И.И. и др. // РЭ. 2022. Т. 67. № 10. С. 935. https://doi.org/10.31857/S0033849422100126
  9. 9. Starodubov A.V., Serdobintsev A.A., Galkin A.G. et al. // Intern. Conf. on Actual Problems of Electron Devices Engineering (APEDE). Saratov, 24–25 Sept. 2020. N.Y.: IEEE, 2020. P. 256. https://doi.org/10.1109/APEDE48864.2020.9255610
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library