- PII
- 10.31857/S0033849423090280-1
- DOI
- 10.31857/S0033849423090280
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 68 / Issue number 9
- Pages
- 879-883
- Abstract
- Based on the results of processing an interferometric pair of radar images with synthesized aperture (SAR) L-band PALSAR-2 taken over the territory of the Bureya landslide in May 2019 and May 2020 from the ALOS-2 satellite, a new unstable surface area was discovered. Rated the average monthly rate of soil displacement is up to 1 cm/month along the surface of the slope at the site of the formation of a new separation wall. It was noted that interferometric processing of archival data had not previously revealed any movements of the slope surface in this place. The most possible reason for the activation of the landslide process in the new area has been identified: a violation of stability as a result of the collapse of the underlying landslide body in December 2018.
- Keywords
- interferometric pair of radar images with synthesized aperture Bureya landslide
- Date of publication
- 16.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 14
References
- 1. Rosen P.A., Hensley S., Joughin I.R. et al. // Proc. IEEE. 2000. V. 88. № 3. P. 333. https://doi.org/10.1109/5.838084
- 2. Chang W., Wang C., Chu C., Kao J. // Proc. IEEE. 2012. V. 100. P. 2835. https://doi.org/10.1109/JPROC.2012.2194629
- 3. Goldstein R.M., Engelhardt H., Frolich M. // Science. 1993. V. 262. № 5139. P. 1525. https://doi.org/10.1126/science.262.5139.1525
- 4. Wang C., Zhang H., Zhang B. et al. // Proc. IEEE IGARSS, Milan, 26–31 July 2015. N.Y.: IEEE, 2015. P. 1634. https://doi.org/10.1109/IGARSS.2015.7326098
- 5. Massonnet D., Rossi M., Carmona C. et al. // Nature. 1993. V. 364. P. 138. https://doi.org/10.1038/364138a0
- 6. Kursah M.B., Wang Y. // Proc. IEEE IGARSS, Yokohama, 28 July–2 August 2019. N.Y.: IEEE, 2019. P. 939. https://doi.org/10.1109/IGARSS.2019.8898702
- 7. Wang Z., Liu G., Chen T. et al. // Proc. 2nd Int. Conf. Comp. Eng. Tech., Chengdu, 16–18 April 2010. N.Y.: IEEE, 2010. V. 3. P. 222. https://doi.org/10.1109/ICCET.2010.5485843
- 8. Perissin D., Wang Z., Lin H. // ISPRS J. Photogrammetry and Remote Sens. 2012. V. 73. P. 58. https://doi.org/10.1016/j.isprsjprs.2012.07.002
- 9. Остроухов А.В., Ким В.И., Махинов А.Н. // Совр. пробл. дистанц. зондирования Земли из космоса. 2019. Т. 16. № 1. С. 254. https://doi.org/10.21046/2070-7401-2019-16-1-254-258
- 10. Зеркаль О.В., Махинов А.Н., Кудымов А.В. и др. // ГеоРиск. 2019. Т. 13. № 4. С. 18. https://doi.org/10.25296/1997-8669-2019-13-4-18-30
- 11. Захарова Л.Н., Захаров А.И., Митник Л.М. // Совр. пробл. дистанц. зондирования Земли из космоса. 2019. Т. 16. № 2. С. 69. https://doi.org/10.21046/2070-7401-2019-16-2-69-74
- 12. Захарова Л.Н., Захаров А.И. // Совр. пробл. дистанц. зондирования Земли из космоса. 2019. Т. 16. № 2. С. 273. https://doi.org/10.21046/2070-7401-2019-16-2-273-277
- 13. Бондур В.Г., Захарова Л.Н., Захаров А.И. и др. // Совр. пробл. дистанц. зондирования Земли из космоса. 2019. Т. 16. № 5. С. 113. https://doi.org/10.21046/2070-7401-2019-16-5-113-119
- 14. Бондур В.Г., Захарова Л.Н., Захаров А.И. и др. // Исслед. Земли из космоса. 2019. № 5. С. 3. https://doi.org/10.31857/S0205-9614201953-14
- 15. Zakharov A., Zakharova L. // Remote Sens. 2022. V. 14. № 20. Article No. 5218. https://doi.org/10.3390/rs14205218
- 16. Бондур В.Г., Захарова Л.Н., Захаров А.И. // Исслед. Земли из космоса. 2019. № 6. С. 26. https://doi.org/10.31857/S0205-96142019626-35
- 17. Bondur V., Chimitdorzhiev T., Dmitriev A., Dagurov P. // Remote Sens. 2021. V. 13. Article No. 5136. https://doi.org/10.3390/rs13245136