RAS PhysicsРадиотехника и электроника Journal of Communications Technology and Electronics

  • ISSN (Print) 0033-8494
  • ISSN (Online) 3034-5901

//

PII
10.31857/S003384942309019X-1
DOI
10.31857/S003384942309019X
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 9
Pages
873-878
Abstract
A description of the algorithm for optimal symbol-by-symbol reception of signal structures based on block noise-resistant codes in non-binary Galois fields is given. It is shown that the basis of this algorithm is the fast spectral transformation algorithm in the Walsh–Hadamard basis with the dimension of the Galois field. It is shown that the resulting complexity of the analyzed character-by-character reception algorithm is determined by the dimension of the dual code, which determines the prospects of its application for block noise-resistant codes with a high code rate (with low redundancy). The results of modeling a character-by-symbol reception algorithm are presented in order to study noise immunity for a number of frequency-efficient digital signals with quadrature-amplitude and amplitude-phase manipulations (with frequency coefficient efficiencies of 3, 4 and 6 bps/Hz) in combination with a parity check code. It is shown that the use of a symbol-by-symbol reception algorithm provides an energy gain of up to 1.5...3.0 dB in relation to the transmission and reception of the considered series of signals without coding.
Keywords
optimal symbol-by-symbol reception block noise-resistant codesnon-binary Galois field
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
15

References

  1. 1. Proakis J.G., Salehi M. Digital Communication. 5th ed. N.Y.: McGraw-Hill, Hugher Education, 2001.
  2. 2. Скляр Б. Цифровая связь. Теоретические основы и практическое применение. М.: ИД “Вильямс”, 2003.
  3. 3. Волков Л.Н., Немировский М.С., Шинаков Ю.С. Системы цифровой радиосвязи. Базовые методы и характеристики. М.: Эко-Трендз, 2005.
  4. 4. Бакулин М.Г., Крейнделин В.Б., Панкратов Д.Ю. Технологии в системах радиосвязи на пути к 5G. М.: Горячая линия–Телеком, 2018.
  5. 5. Second Generation Framing Structure, Channel Coding and Modulation Systems for Broadcasting, Interactive Services, News Gathering and Other Broadband Satellite Applications. Part 2: DVB-S2 Extensions (DVB-S2X) DVB. Document A083-2. European Broadcasting Union CH-1218, Geneva, 2020. Режим доступа: https://dvb.org/wp-content/uploads/2019/ 10/A083-2_DVB-S2X_Draft-EN-302-307-2-v121_Feb_ 2020.pdf.
  6. 6. ATIS 3GPP SPECIFICATION, 3GPP TS 38.211 V16.2.0 (2020-06): 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Physical channels and modulation (Release 16). Published by Alliance for Telecommunications Industry Solutions, Washington, 2020.
  7. 7. Питерсон У., Уэлдон Э. Коды, исправляющие ошибки. М.: Мир, 1976.
  8. 8. Назаров Л.Е., Батанов В.В. // РЭ. 2022. Т. 67. № 8. С. 782. https://doi.org/10.31857/S0033849422080137
  9. 9. Bahl L.R., Cocke J., Jelinek F., Raviv J. // IEEE Trans. 1974. V. IT-20. № 3. P. 284.
  10. 10. Смольянинов В.М., Назаров Л.Е. // РЭ. 1999. Т. 44. № 7. С. 838.
  11. 11. Johnson S.J. Iterative Error Correction: Turbo, Low-Density Parity-Check and Repeat-Accumulate Codes. Cambridge: Univ. Press, 2010.
  12. 12. Назаров Л.Е., Головкин И.В. // РЭ. 2010. № 10. С. 1193.
  13. 13. Терешонок М.В., Кленов Н.В., Лобов Е.М. и др. // РЭ. 2022. Т. 67. № 3. С. 294. https://doi.org/10.31857/S0033849422030160
  14. 14. Ping Li, Chan S., Yeng K.L. // Electronic Lett. 1997. V. 33. № 19. P. 1614.
  15. 15. Steiner F., Bocherer G., Liva G. // IEEE Commun. Lett. 2018. V. 22. № 11. P. 2210.
  16. 16. Lin S.-J. // IEEE Trans. 2018. V. COM-66. № 8. P. 3235.
  17. 17. Назаров Л.Е., Шишкин П.В. // РЭ. 2019. № 9. С. 910.
  18. 18. Kaipa K. // IEEE Commun. Lett. 2018. V. 22. № 11. P. 2210.
  19. 19. Боровков А.А. Математическая статистика. Оценка параметров. Проверка гипотез. М.: Наука, 1984.
  20. 20. Haзapoв Л.E. // PЭ. 1999. T. 44. № 10. C. 1231.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library