RAS PhysicsРадиотехника и электроника Journal of Communications Technology and Electronics

  • ISSN (Print) 0033-8494
  • ISSN (Online) 3034-5901

Increasing the Quality Indicators of the Functioning of Fuzzy Solvers at the Defuzzification Stage

PII
10.31857/S0033849423060153-1
DOI
10.31857/S0033849423060153
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 7
Pages
718-726
Abstract
An approach to the implementation of the defuzzification procedure in microprocessor systems of fuzzy information processing is proposed. A computationally efficient model of the defuzzification operation is considered, based on the use of the concept of the measure of validity of a logical conclusion as a composition of the current values of the reliability of all elements of the conditional part of the rule that proposes this conclusion. The application of the approach provides a significant improvement in the quality of fuzzy approximation with little complexity of algorithmic and hardware-software tools. Examples of the use of this approach in practical problems are given.
Keywords
defuzzification procedure microprocessor systems fuzzy information processing
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
15

References

  1. 1. Shafei M.A.R., Ibrahim D.K., Bahaa M. // Ain Shams Engineering J. 2022. V. 13. № 5. Article No 101710.
  2. 2. Liu K.-W., Kuo Ch.-Ch. // Int. J. Advanced Manufacturing Technol. 2022. V. 121. № 11–12. P. 7325.
  3. 3. Mahdab S., Moualdia A. // Rev. Roumaine des Sciences Techniques. Serie Electrotechnique et Energetique. 2022. V. 67. № 2. P. 111.
  4. 4. Fernando A.H., Lim L.A.G., Bandala A.A. et al. // Proc. 2021 IEEE 13th Int. Conf. on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM). Manila. 28–30 Nov. N.Y.: IEEE, 2021, Article No. 177837.
  5. 5. Cetin O. // Studies in Systems, Decision and Control. 2021. V. 344. P. 237.
  6. 6. Qureshi M.S., Swarnkar P., Gupta S. // Robotics and Autonomous Systems. 2018. V. 109. P. 68.
  7. 7. Andre E., Dulong R., Guermouche A., Trahay F. // Concurrency and Computation: Practice and Experience. 2022. V. 34. № 31. Article No. e6580.
  8. 8. Garcia A.M., Serpa M., Griebler D. et al. // Lecture Notes in Computer Science, 2020, V. 12254. P. 142.
  9. 9. Baez-Sanchez A., Flores-Franulic A., Moretti A.C. et al. // Fuzzy Sets and Systems. 2022. V. 443. P. 34.
  10. 10. Xu B., Lu X. // IEEE Access. 2020. V. 8. Article No. 215327.
  11. 11. Ruiz A., Gutierrez J., Fernandez J.A.F. // IEEE Micro. 1995. V 15. № 6. P. 67.
  12. 12. Esogbue A.O., Song Q. // Fuzzy Optimization and Decision Making. 2003. V. 2. № 4. P. 283.
  13. 13. Mahato S.K., Bhattacharyee N., Pramanik R. // Int. J. of Operational Research. 2020. V. 37. № 3. P. 307.
  14. 14. Mahdiani H.R., Banaiyan A., Haji Seyed Javadi M. et al. // Engineering Applications of Artificial Intelligence, 2013. V. 26. № 1. P. 162.
  15. 15. Васильев А.Е., Васильянов Г.С., Кабезас Тапия Д.Ф. и др. // РЭ. 2017. Т. 62. № 12. С. 1243.
  16. 16. Bacильeв A.E. // PЭ. 2021. T. 66. № 3. C. 291.
  17. 17. Van Leekwijck W., Kerre E. // Fuzzy Sets and Systems. 1999. V. 108. № 2. P. 159.
  18. 18. Saletic D., Velasevic D., Mastorakis N. // Proc. 6th WSEAS Int. Conf. on Circuits, Systems, Communications and Computers. Athens: WSEAS, 2002. P. 7.
  19. 19. Fuzzy Logic Application HandBook. Mount Prospect: Intel Corporation, 1994.
  20. 20. Jones M.T. AI Application Programming. Hingham: Charles River Media, 2003.
  21. 21. Васильев А.Е. Встраиваемые системы автоматики и вычислительной техники. Микроконтроллеры. М.: Горячая линия-Телеком, 2018.
  22. 22. INFORM: Institut für Operations Research und Management GmbH. https://www.fuzzytech.com/download/. Дата обращения 06.09.2022.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library