- Код статьи
- 10.31857/S0033849423060128-1
- DOI
- 10.31857/S0033849423060128
- Тип публикации
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 68 / Номер выпуска 7
- Страницы
- 660-668
- Аннотация
- Отталкиваясь от определения основного тона речи диктора как минимальной частоты линейчатого спектра мощности вокализованных отрезков речевого сигнала, дана оценка потенциально достижимой точности ее измерения в условиях действии фоновых помех типа белого гауссова шума. На основе этой оценки разработан субоптимальный алгоритм измерения частоты основного тона по короткому фрейму речевого сигнала. Эффективность разработанного алгоритма подтверждена результатами проведенного эксперимента, в ходе которого использовалось авторское программное обеспечение.
- Ключевые слова
- Дата публикации
- 01.07.2023
- Год выхода
- 2023
- Всего подписок
- 0
- Всего просмотров
- 12
Библиография
- 1. Rabiner L.R., Shafer R.W. Theory and Applications of Digital Speech Processing. Boston: Pearson, 2011.
- 2. Hirst D., Looze C. // Cambridge Handbooks in Language and Linguistics. Cambridge: Cambridge Univ. Press. 2021. P. 336. https://doi.org/10.1017/9781108644198.014
- 3. Schenkman B.N., Gidla V.K. // Appl. Acoustics. 2020. V. 163. Article 107214. https://doi.org/10.1016/j.apacoust.2020.107214
- 4. Allam A.R., Ashour A.S., Elnaby M.A., El-Samie F.E. // 7th Int. Japan-Africa Conf. Electronics, Communications and Computations (JAC-ECC). 2019. P. 106. https://doi.org/10.1109/JAC-ECC48896.2019.9051338
- 5. Souza G.V., Duarte J.M., Viegas F. et al. // J. Voice. 2020. V. 34. № 4. P. 641. https://doi.org/10.1016/j.jvoice.2018.12.007
- 6. Stahl J., Mowlaee P. // Speech Communication. 2019. V. 111. P. 1. https://doi.org/10.1016/j.specom.2019.05.001
- 7. Sharma G., Umapathy K., Krishnan S. // Appl. Acoustics. 2020. V. 158. Article No 107020. https://doi.org/10.1016/j.apacoust.2019.107020
- 8. Zhang W., Wang R., Zhang Q., Fang S. // Appl. Acoustics. 2020. V. 166. Article No 107338. https://doi.org/10.1016/j.apacoust.2020.107338
- 9. Савченко А.В., Савченко В.В. // Измерит. техника. 2022. № 6. С. 60. https://doi.org/10.32446/0368-1025it.2022-6-60-66
- 10. Yadav I.C., Shahnawazuddin S., Pradhan G. // Digital Signal Processing. 2019. V. 86. P. 55. https://doi.org/10.1016/j.dsp.2018.12.013
- 11. Kumar S. // Int. J. Speech Technol. 2019. V. 22. P. 885. https://doi.org/10.1007/s10772-019-09634-5
- 12. Savchenko V.V. // Radioelectronics and Communications Systems. 2020. V. 63. P. 532. https://doi.org/10.3103/S0735272720100039
- 13. Tohyama M. // Acoustic Signals and Hearing. Kanagawa, Japan: Acad. Press, 2020. P. 89. https://doi.org/10.1016/B978-0-12-816391-7.00013-9
- 14. Gibson J.D. // Information. 2016. V. 32. № 7. https://doi.org/10.3390/info7020032
- 15. Gu Yu., Wei H.L. // Inform. Sci. 2018. V. 451–452. P. 195. https://doi.org/10.1016/j.ins.2018.04.007
- 16. Cui S., Li E., Kang X. // IEEE Int. Conf. Multimedia and Expo (ICME). London: United Kingdom. 2020. P. 1. https://doi.org/10.1109/ICME46284.2020.9102765
- 17. Smith S.R. // J. Acoustical Soc. Amer. 2021. V. 150. Article No. A113. https://doi.org/10 |1121|10|0007806|
- 18. Савченко В.В., Савченко А.В. // РЭ. 2020. Т. 65. № 11. С. 1101. https://doi.org/10.31857/S0033849420110157
- 19. Savchenko V.V., Savchenko A.V. // Radioelectronics and Commun. Systems. 2019. V. 62. № 5. P. 276. https://doi.org/10.3103/S0735272719050042
- 20. Kashani H.B., Sayadiyan A. // Computer Speech & Language. 2018. V. 50. P. 105. https://doi.org/10.1016/j.csl.2017.12.008
- 21. Савченко В.В., Савченко Л.В. // РЭ. 2021. Т. 66. № 11. С. 1100. https://doi.org/10.31857/S0033849421110085
- 22. Kent R.D., Vorperian H.K. // J. Commun. Disorders. 2018. V. 74. P. 74. https://doi.org/10.1016/j.jcomdis.2018.05.004
- 23. Gibson J.D. // Information. 2019. V. 179. № 10. https://doi.org/10.3390/info10050179
- 24. Markel J.D., Gray A.H. // Linear Prediction of Speech. Communication and Cybernetics. Berlin; Springer, 1976. V. 12. https://doi.org/10.1007/978-3-642-66286-7_8
- 25. Sueur J. // Sound Analysis and Synthesis with R. Cham: Springer, 2018. https://doi.org/10.1007/978-3-319-77647-7_12
- 26. Esfandiari M., Vorobyov S.A., Karimi M. // Signal Processing. 2020. V. 171. Article No 107480. https://doi.org/10.1016/j.sigpro.2020.107480
- 27. Jaramillo A.E., Nielsen J.K., Christensen M.G. // 27th Europ. Signal Processing Conf. (EUSIPCO). 2019. P. 1. https://doi.org/10.23919/EUSIPCO.2019.8902763
- 28. Palaparthi A., Titze I.R. // Speech Communication. 2020. V. 123. P. 98. https://doi.org/10.1016/j.specom.2020.07.003
- 29. Радиоэлектронные системы. Основы построения и теория: Справочник / Под ред. Я.Д. Ширмана. 2‑е изд. М.: Радиотехника, 2007.
- 30. Sinha R., Shahnawazuddin S. // Computer Speech & Language. 2018. V. 48. P. 103. https://doi.org/10.1016/j.csl.2017.10.007
- 31. Zeremdini J., Messaoud M., Bouzid A. // Appl. Acoustics. 2017. V. 120. P. 45. https://doi.org/10.1016/j.apacoust.2017.01.013
- 32. Jouvet D., Laprie Y. // 25th Eur. Signal Processing Conf. (EUSIPCO). 2017. P. 1614. https://doi.org/10.23919/EUSIPCO.2017.8081482
- 33. Oppenheim A.V., Schafer R.W. // IEEE Signal Processing Magazine. 2004. V. 21. № 5. P. 95. https://doi.org/10.1109/MSP.2004.1328092
- 34. Marple S.L. Digital spectral analysis with applications. 2-nd ed. Mineola, N.Y.: Dover Publications, 2019.
- 35. Parlak C., Altun Yu. // Mathematical Problems in Engineering. 2021. V. 2021. Article No. 6658951. https://doi.org/10.1155/2021/6658951
- 36. Savchenko A.V., Savchenko V.V. & Savchenko L.V. // Optimization Lett. 2021. № 7. P. 1. https://doi.org/10.1007/s11590-021-01790-5
- 37. Levkov D.G., Panin A.G., Tkachev I.I. // The Astrophysical J. 2022. V. 925. №. 2. P. 109. https://doi.org/10.3847/1538-4357/ac3250
- 38. Савченко А.В., Савченко Л.В. // Измерит. техника. 2021. № 4. С. 72. https://doi.org/10.32446/0368-1025it.2021-4-49-57
- 39. Akçay M.B., Oğuz K. // Speech Communication. 2020. V. 116. P. 56. https://doi.org/10.1016/j.specom.2019.12.001