RAS PhysicsРадиотехника и электроника Journal of Communications Technology and Electronics

  • ISSN (Print) 0033-8494
  • ISSN (Online) 3034-5901

Suboptimal Algorithm for Measuring Pitch Frequency Using Discrete Fourier Transform of a Speech Signa

PII
10.31857/S0033849423060128-1
DOI
10.31857/S0033849423060128
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 7
Pages
660-668
Abstract
Starting from the definition of the main tone of the speaker’s speech as the minimum frequency of the linear power spectrum of the vocalized segments of the speech signal, an estimation of potentially achievable accuracy of its measurement under the action of background interference such as white Gaussian noise has been made. Based on this estimation, a suboptimal algorithm for measuring the pitch frequency using a short speech frame has been developed. The developed algorithm effectiveness is confirmed by the results of the experiment, during which the author’s software was used.
Keywords
speech signal vocalized segments suboptimal algorithm pitch frequency
Date of publication
01.07.2023
Year of publication
2023
Number of purchasers
0
Views
15

References

  1. 1. Rabiner L.R., Shafer R.W. Theory and Applications of Digital Speech Processing. Boston: Pearson, 2011.
  2. 2. Hirst D., Looze C. // Cambridge Handbooks in Language and Linguistics. Cambridge: Cambridge Univ. Press. 2021. P. 336. https://doi.org/10.1017/9781108644198.014
  3. 3. Schenkman B.N., Gidla V.K. // Appl. Acoustics. 2020. V. 163. Article 107214. https://doi.org/10.1016/j.apacoust.2020.107214
  4. 4. Allam A.R., Ashour A.S., Elnaby M.A., El-Samie F.E. // 7th Int. Japan-Africa Conf. Electronics, Communications and Computations (JAC-ECC). 2019. P. 106. https://doi.org/10.1109/JAC-ECC48896.2019.9051338
  5. 5. Souza G.V., Duarte J.M., Viegas F. et al. // J. Voice. 2020. V. 34. № 4. P. 641. https://doi.org/10.1016/j.jvoice.2018.12.007
  6. 6. Stahl J., Mowlaee P. // Speech Communication. 2019. V. 111. P. 1. https://doi.org/10.1016/j.specom.2019.05.001
  7. 7. Sharma G., Umapathy K., Krishnan S. // Appl. Acoustics. 2020. V. 158. Article No 107020. https://doi.org/10.1016/j.apacoust.2019.107020
  8. 8. Zhang W., Wang R., Zhang Q., Fang S. // Appl. Acoustics. 2020. V. 166. Article No 107338. https://doi.org/10.1016/j.apacoust.2020.107338
  9. 9. Савченко А.В., Савченко В.В. // Измерит. техника. 2022. № 6. С. 60. https://doi.org/10.32446/0368-1025it.2022-6-60-66
  10. 10. Yadav I.C., Shahnawazuddin S., Pradhan G. // Digital Signal Processing. 2019. V. 86. P. 55. https://doi.org/10.1016/j.dsp.2018.12.013
  11. 11. Kumar S. // Int. J. Speech Technol. 2019. V. 22. P. 885. https://doi.org/10.1007/s10772-019-09634-5
  12. 12. Savchenko V.V. // Radioelectronics and Communications Systems. 2020. V. 63. P. 532. https://doi.org/10.3103/S0735272720100039
  13. 13. Tohyama M. // Acoustic Signals and Hearing. Kanagawa, Japan: Acad. Press, 2020. P. 89. https://doi.org/10.1016/B978-0-12-816391-7.00013-9
  14. 14. Gibson J.D. // Information. 2016. V. 32. № 7. https://doi.org/10.3390/info7020032
  15. 15. Gu Yu., Wei H.L. // Inform. Sci. 2018. V. 451–452. P. 195. https://doi.org/10.1016/j.ins.2018.04.007
  16. 16. Cui S., Li E., Kang X. // IEEE Int. Conf. Multimedia and Expo (ICME). London: United Kingdom. 2020. P. 1. https://doi.org/10.1109/ICME46284.2020.9102765
  17. 17. Smith S.R. // J. Acoustical Soc. Amer. 2021. V. 150. Article No. A113. https://doi.org/10 |1121|10|0007806|
  18. 18. Савченко В.В., Савченко А.В. // РЭ. 2020. Т. 65. № 11. С. 1101. https://doi.org/10.31857/S0033849420110157
  19. 19. Savchenko V.V., Savchenko A.V. // Radioelectronics and Commun. Systems. 2019. V. 62. № 5. P. 276. https://doi.org/10.3103/S0735272719050042
  20. 20. Kashani H.B., Sayadiyan A. // Computer Speech & Language. 2018. V. 50. P. 105. https://doi.org/10.1016/j.csl.2017.12.008
  21. 21. Савченко В.В., Савченко Л.В. // РЭ. 2021. Т. 66. № 11. С. 1100. https://doi.org/10.31857/S0033849421110085
  22. 22. Kent R.D., Vorperian H.K. // J. Commun. Disorders. 2018. V. 74. P. 74. https://doi.org/10.1016/j.jcomdis.2018.05.004
  23. 23. Gibson J.D. // Information. 2019. V. 179. № 10. https://doi.org/10.3390/info10050179
  24. 24. Markel J.D., Gray A.H. // Linear Prediction of Speech. Communication and Cybernetics. Berlin; Springer, 1976. V. 12. https://doi.org/10.1007/978-3-642-66286-7_8
  25. 25. Sueur J. // Sound Analysis and Synthesis with R. Cham: Springer, 2018. https://doi.org/10.1007/978-3-319-77647-7_12
  26. 26. Esfandiari M., Vorobyov S.A., Karimi M. // Signal Processing. 2020. V. 171. Article No 107480. https://doi.org/10.1016/j.sigpro.2020.107480
  27. 27. Jaramillo A.E., Nielsen J.K., Christensen M.G. // 27th Europ. Signal Processing Conf. (EUSIPCO). 2019. P. 1. https://doi.org/10.23919/EUSIPCO.2019.8902763
  28. 28. Palaparthi A., Titze I.R. // Speech Communication. 2020. V. 123. P. 98. https://doi.org/10.1016/j.specom.2020.07.003
  29. 29. Радиоэлектронные системы. Основы построения и теория: Справочник / Под ред. Я.Д. Ширмана. 2‑е изд. М.: Радиотехника, 2007.
  30. 30. Sinha R., Shahnawazuddin S. // Computer Speech & Language. 2018. V. 48. P. 103. https://doi.org/10.1016/j.csl.2017.10.007
  31. 31. Zeremdini J., Messaoud M., Bouzid A. // Appl. Acoustics. 2017. V. 120. P. 45. https://doi.org/10.1016/j.apacoust.2017.01.013
  32. 32. Jouvet D., Laprie Y. // 25th Eur. Signal Processing Conf. (EUSIPCO). 2017. P. 1614. https://doi.org/10.23919/EUSIPCO.2017.8081482
  33. 33. Oppenheim A.V., Schafer R.W. // IEEE Signal Processing Magazine. 2004. V. 21. № 5. P. 95. https://doi.org/10.1109/MSP.2004.1328092
  34. 34. Marple S.L. Digital spectral analysis with applications. 2-nd ed. Mineola, N.Y.: Dover Publications, 2019.
  35. 35. Parlak C., Altun Yu. // Mathematical Problems in Engineering. 2021. V. 2021. Article No. 6658951. https://doi.org/10.1155/2021/6658951
  36. 36. Savchenko A.V., Savchenko V.V. & Savchenko L.V. // Optimization Lett. 2021. № 7. P. 1. https://doi.org/10.1007/s11590-021-01790-5
  37. 37. Levkov D.G., Panin A.G., Tkachev I.I. // The Astrophysical J. 2022. V. 925. №. 2. P. 109. https://doi.org/10.3847/1538-4357/ac3250
  38. 38. Савченко А.В., Савченко Л.В. // Измерит. техника. 2021. № 4. С. 72. https://doi.org/10.32446/0368-1025it.2021-4-49-57
  39. 39. Akçay M.B., Oğuz K. // Speech Communication. 2020. V. 116. P. 56. https://doi.org/10.1016/j.specom.2019.12.001
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library