ОФНРадиотехника и электроника Journal of Communications Technology and Electronics

  • ISSN (Print) 0033-8494
  • ISSN (Online) 3034-5901

Асимптотики локализованных Бесселевых пучков и лагранжевы многообразия

Код статьи
10.31857/S0033849423060037-1
DOI
10.31857/S0033849423060037
Тип публикации
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 68 / Номер выпуска 6
Страницы
527-541
Аннотация
Рассмотрены асимптотические решения типа бесселевых пучков трехмерного уравнения Гельмгольца, т.е. решения, имеющие максимумы в окрестности оси \(z\) и описываемые на нормальных к ней плоскостях функциями Бесселя. Поскольку функции Бесселя медленно убывают на бесконечности, то энергия таких решений оказывается неограниченной. Описаны подходы к локализации таких решений, основанные на их представлении в виде канонического оператора Маслова на подходящих лагранжевых многообразиях с простыми каустиками, имеющими вид вырожденных и невырожденных складок. Получены эффективные формулы для указанных решений в виде функций Бесселя и Эйри сложного аргумента.
Ключевые слова
Дата публикации
01.06.2023
Год выхода
2023
Всего подписок
0
Всего просмотров
14

Библиография

  1. 1. Арнольд В.И., Варченко А.Н., Гусейн-Заде С.М. Особенности дифференцируемых отображений. М.: Наука, 1982.
  2. 2. Крюковский А.С., Лукин Д.С., Палкин Е.А., Растягаев Д.В. // Труды МФТИ. 2009. Т. 1. № 2. С. 54.
  3. 3. Крюковский А.С. Равномерномерная асимптотическая теория краевых и угловых волновых катастроф. М.: РосНОУ, 2013.
  4. 4. Bova J.I., Lukin D.S., Kryukovskii A.S. // Russ. J. Math. Phys. 2020. V. 27. № 4. P. 446.
  5. 5. Маслов В.П. Теория возмущений и асимптотические методы. М.: Из-во МГУ, 1965.
  6. 6. Маслов В.П., Федорюк М.В. Квазиклассическое приближение для уравнений квантовой механики. М.: Наука, 1967.
  7. 7. Доброхотов С.Ю., Назайкинский В.Е., Шафаревич А.И. // Изв. РАН. Сер. матем. 2017. Т. 81. № 2. С. 53.
  8. 8. Аникин А.Ю., Доброхотов С.Ю., Назайкинский В.Е., Цветкова А.В. // Теорет. и матем. физика. 2019. Т. 201. № 3. P. 382.
  9. 9. Доброхотов С.Ю., Миненков Д.С., Назайкинский В.Е. // Теорет. и матем. физика. 2021. Т. 208. № 2. С. 196.
  10. 10. Доброхотов С.Ю., Макракис Г., Назайкинский В.Е. // Теорет. и матем физика. 2014. Т. 180. № 2. С. 162.
  11. 11. Аникин А.Ю., Доброхотов С.Ю., Назайкинский В.Е. // Матем. заметки. 2018. Т. 104. № 4. С. 483.
  12. 12. Маслов В.П. Комплексный метод ВКБ в нелиненых уравнениях. М.: Наука, 1977.
  13. 13. Салех Б., Тейх М. Оптика и фотоника. Принципы и применения. Долгопрудный: ИД Интеллект, 2012. Т. 1.
  14. 14. Киселев А.П. // Оптика и спектроскопия. 2004. Т. 96. № 4. С. 533.
  15. 15. Plachenov A.B., Chamorro-Posada P., Kiselev P. // Phys. Rev. A. 2020. V. 102. № 2. P. 023533.
  16. 16. Frenzen C.I., Wong R. // Siam J. Math. Anal. 1988. V. 19. № 5. P. 1232.
  17. 17. Dobrokhotov S.Yu., Tsvetkova A.V. // Rus. J. Math. Phys. 2021. V. 28. № 2. P. 198.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека