RAS PhysicsРадиотехника и электроника Journal of Communications Technology and Electronics

  • ISSN (Print) 0033-8494
  • ISSN (Online) 3034-5901

General Solution of the Problem of Synthesis of a Geodesic Lens with Central Symmetry and Dielectric Filling

PII
10.31857/S0033849423050170-1
DOI
10.31857/S0033849423050170
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 5
Pages
417-423
Abstract
A solution is obtained for the problem of synthesis of a metal–dielectric geodesic lens with central symmetry and, in the general case, inhomogeneous dielectric filling, which transforms the field of a point source into a given geometric optical field. By way of example using the obtained solution, the problems of synthesis of a geodesic lens antenna with layered and gradient dielectric filling are considered. In particular, solutions are obtained for lens antennas with in-phase output front and out-of-phase front that forms a tableshaped radiation pattern. The solutions are analyzed with the aid of numerical simulation using the finite element method.
Keywords
metal–dielectric geodesic lens tableshaped radiation pattern finite element method
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
13

References

  1. 1. Hong W., Jiang Z.H., Yu Ch. et al. // IEEE Trans. 2017. V. AP-65. № 12. P. 6231.
  2. 2. Quevedo-Teruel O., Ebrahimpouri M., Ghasemifard F. // IEEE Commun. Magazine. 2018. V. 56. № 7. P. 36.
  3. 3. Numan A.B., Frigon J.-F., Laurin J.-J. // IEEE Trans. 2018. V. AP-66. № 10. P. 5614.
  4. 4. Quevedo-Teruel O., Ebrahimpouri M., Kehn M.N. // IEEE Antennas Wireless Propagation Lett. 2016. V. 15. P. 484.
  5. 5. Diallo C.D., Girard E., Legay H., Sauleau R. // Proc. 11th Europ. Conf. Antennas and Propagation (EUCAP). Paris. 19–24 Mar. 2017. N.Y.: IEEE, 2017. P. 1401.
  6. 6. Quevedo-Teruel O., Miao J., Mattsson M. et al. // IEEE Antennas Wireless Propagation Lett. 2018. V. 17. № 9. P. 1588.
  7. 7. Bantavis P., Gonzalez C.G., Sauleau R. et al. // Opt. Express. 2020. V. 28. № 10. P. 14648.
  8. 8. Chou H.-T., Chang Y.-S., Huang H.-J. et al. // IEEE Access. 2019. V. 7. P. 182974.
  9. 9. Chou H.-T., Chang Y.-S., Huang H.-J. et al. // IEEE Access. 2020. V. 8. P. 79124.
  10. 10. Венецкий A.C., Калошин B.A., Чан Т.Т. // РЭ. 2022. Т. 67. № 8. С. 754.
  11. 11. Liao Q., Fonseca N.J.G., Quevedo-Teruel O. // IEEE Trans. 2018. V. AP-66. № 12. P. 7383.
  12. 12. Fonseca N.J.G., Liao Q., Quevedo-Teruel O. // IEEE Trans. 2020. V. AP-68. № 5. P. 3410.
  13. 13. Fonseca N.J.G., Liao Q., Quevedo-Teruel O. // IET Microwave Antennas Propagat. 2021. V. 15. № 2. P. 123.
  14. 14. Fonseca N.J.G. // Rev. of Electromagnetics. 2022. V. 1. № 1. Article No. 21008.
  15. 15. Венецкий А.С., Калошин В.А., Чан Т.Т. // РЭ. 2022. Т. 67. № 5. С. 447.
  16. 16. Orgeira O., León G., Fonseca N.J.G., Quevedo-Teruel O. // IEEE Trans. 2022. V. AP-70. № 5. P. 3320.
  17. 17. Sochacki J. // J. Modern Optics. 1988. V. 35. № 6. P. 891.
  18. 18. Вайнштейн Л.А. Теория диффракции и метод факторизации. М.: Сов. радио, 1966.
  19. 19. Калошин В.А. Дис. … док. физ.-мат. наук. М.: ИРЭ АН СССР, 1989. 250 с.
  20. 20. Ахияров В.В., Калошин В.А., Никитин Е.А. // Журн. радиоэлектроники. 2014. № 1. http://jre.cplire.ru/ jre/jan14/18/text.pdf.
  21. 21. Калошин В.А., Стоянов С.В. // РЭ. 1989. Т. 35. № 12. С. 2640.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library