RAS PhysicsРадиотехника и электроника Journal of Communications Technology and Electronics

  • ISSN (Print) 0033-8494
  • ISSN (Online) 3034-5901

Effect of External Magnetic Fields on the Amplitude‒Time Characteristics of Penning Ion Sources

PII
10.31857/S0033849423050133-1
DOI
10.31857/S0033849423050133
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 5
Pages
487-491
Abstract
The operation modes of pulsed Penning ion sources under the action of external magnetic fields corresponding to the operating conditions of geophysical well survey equipment are discussed. The obtained dependences of the amplitude‒time characteristics of the ion sources on the magnetic field value and configuration are reported. Based on the data obtained, options of neutron tube magnetic systems are proposed, which ensure an increase in the operation stability of neutron generators.
Keywords
enning ion source amplitude‒time characteristics amplitude‒time characteristics
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Бармаков Ю.Н., Боголюбов Е.П., Миллер В.В. и др. // Каротажник. 2006. № 10‒11 (151–152). С. 174.
  2. 2. Юрков Д.И., Боголюбов Е.П., Миллер В.В. и др. // Каротажник. 2013. № 9(231). С. 77.
  3. 3. Valkovic V. 14 MeV Neutrons. Physics and Applications. Boca Raton: CRC Press, 2016.
  4. 4. Zhou X., Lu J., Liu Y., Ouyang X. // Nuclear Instruments and Methods in Physics Research A. 2021. V. 987. Article No. 164836. https://doi.org/10.1016/j.nima.2020.164836
  5. 5. Liu W., Li M., Gao K., Gu D. // Nuclear Instruments and Methods in Physics Research A. 2014. V. 768. P. 120. https://doi.org/10.1016/j.nima.2014.09.052
  6. 6. Hooper E.B. // Adv. Electronics and Electron Phys. 1970. V. 27. P. 295. https://doi.org/10.1016/S0065-2539 (08)60040-2
  7. 7. Chen F.K. // J. Appl. Phys. 1984. V. 56. № 11. P. 3191. https://doi.org/10.1063/1.333882
  8. 8. Мамедов Н.В., Масленников С.П., Солодовников А.А., Юрков Д.И. // Физика плазмы. 2020. Т. 46. № 2. С. 172. https://doi.org/10.31857/S0367292120020067
  9. 9. Mamedov N.V., Gubarev A.V., Zverev V.I. et al. // Plasma Sources Sci. Technol. 2020. № 2. Article No. 025001. https://doi.org/10.1088/1361-6595/ab6758
  10. 10. Рачков Р.С., Пресняков А.Ю., Юрков Д.И. // Атомная энергия. 2019. Т. 126. № 6. С. 334.
  11. 11. Масленников С.П., Серебрякова А.С. // РЭ. 2018. Т. 63. № 1. С. 80. https://doi.org/10.7868/S0033849417010119
  12. 12. Комаров Д.А., Масленников С.П. // РЭ. 2019. Т. 64. № 1. С. 77. https://doi.org/10.1134/S0033849419010091
  13. 13. Мамедов Н.В., Масленников С.П. Пресняков Ю.К. и др. // ЖТФ. 2019. Т. 89. № 9. С. 1367. https://doi.org/10.21883/JTF.2019.09.48062.34-19
  14. 14. Мамедов Н.В., Щитов Н.Н., Колодко Д.В и др. // ЖТФ. 2018. Т. 88. № 8. С. 1164. https://doi.org/10.21883/JTF.2018.08.46304.2396
  15. 15. Масленников С.П., Мамедов И.М. // РЭ. 2022. Т. 67. № 7. С. 722. https://doi.org/10.31857/S0033849422070117
  16. 16. Mamedov N.V., Rohmanenkov A.S., Solodovnikov A.A. // J. Phys.: Conf. Ser. 2021. V. 2064. Article No. 012039. https://doi.org/10.1088/1742-6596/2064/1/012039
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library