RAS PhysicsРадиотехника и электроника Journal of Communications Technology and Electronics

  • ISSN (Print) 0033-8494
  • ISSN (Online) 3034-5901

Electronic Structure and Properties of the Ground State of Fe–Pt Based Alloys

PII
10.31857/S0033849423040101-1
DOI
10.31857/S0033849423040101
Publication type
Status
Published
Authors
Volume/ Edition
Volume 68 / Issue number 4
Pages
378-383
Abstract
The properties of the ground state and the electronic structure of Fe2PtZ (Z = Ga, In, Ge, Si, Sn, Al) and FeRh1 – xPtx in the framework of the density functional theory implemented in the VASP software package alloys have been studied. Densities of electronic states for Fe2PtZ and FePt are obtained. It is shown that in Fe2PtIn and FePt high values of spin polarization are observed. It has been found that with increasing platinum concentration, the staggered antiferromagnetic spin configuration becomes unstable, and in the concentration range above 0.625, the antiferromagnetic configuration with layer-by-layer alternation of magnetic moment directions becomes advantageous. It was found that with a further increase in the platinum concentration, a ferromagnetic phase is observed.
Keywords
density functional theory antiferromagnetic spin configuration ferromagnetic phase
Date of publication
16.09.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. Kim K.J., Lee S.J., Wiener T.A., Lynch D.W. // J. Appl. Phys. 2001. V. 89. № 1. P. 244. https://doi.org/10.1063/1.1331064
  2. 2. Thiele J.-U., Maat S., Fullerton E.E. // Appl. Phys. Lett. 2003. V. 82. № 17. P. 2859. https://doi.org/10.1063/1.1571232
  3. 3. Annaorazov M.P., Asatryan K.A., Myalikgulyev G. et al. // Cryogenics. 1992. V. 32. № 10. P. 867. https://doi.org/10.1016/0011-2275 (92)90352-B
  4. 4. Duplessis R.R., Stern R.A., Mac Laren J.M. // J. Appl. Phys. 2004. V. 95. № 11. P. 6589. https://doi.org/10.1063/1.1652422
  5. 5. Coffey K.R., Parker M.A., Howard J.K. // IEEE Trans. Magn. 1995. V. 31. № 6. P. 2737. https://doi.org/10.1109/20.490108
  6. 6. Weller D., Parker G., Mosendz O. et al. // J. Vac. Sci. Technol. 2016. V. 34. № 6. P. 060801. https://doi.org/10.1116/1.4965980
  7. 7. Manekar M., Roy S. // J. Phys. D: Appl. Phys. 2011. V. 44. № 24. P. 242001. https://doi.org/10.1088/0022-3727/44/24/242001
  8. 8. Kuncser V., Nicula R., Ponkratz U. et al. // J. Alloys Compound. 2005. V. 386. № 1. P. 8. https://doi.org/10.1016/j.jallcom.2004.04.139
  9. 9. Chirkova A., Volegov A.S., Neznakhin D.S. et al. // Solid State Phenom. 2012. V. 190. P. 299. https://doi.org/10.4028/www.scientific.net/SSP.190.299
  10. 10. Yuasa S., Miyajima H. // Nucl. Instrum. Methods Phys. Res. Sec. B. 1993. V. 76. № 1–4. P. 71. https://doi.org/10.1016/0168-583X (93)95136-S
  11. 11. Takizawa K., Ono T., Miyajima H. // J. Magn. Magn. Mater. 2001. V. 226. P. 572. https://doi.org/10.1016/S0304-8853 (00)01296-8
  12. 12. Kouvel J.S., Hartelius C.C. // J. Appl. Phys. 1962. V. 33. № 3. P. 1343. https://doi.org/10.1063/1.1728721
  13. 13. Ibarra M.R., Algarabel P.A. // Phys. Rev. B. 50 1994. V. 50. № 6. P. 4196. https://doi.org/10.1103/PhysRevB.50.4196
  14. 14. Nikitin S.A., Myalikgulyev G., Tishin A.M. et al. // Phys. Lett. A. 1990. V. 148. № 6–7. P. 363. https://doi.org/10.1016/0375-9601 (90)90819-A
  15. 15. Chirkova A., Skokov K.P., Schultz L. et al. // Acta Mater. 2016. V. 106. P. 15. https://doi.org/10.1016/j.actamat.2015.11.054
  16. 16. Aliev A.M., Batdalov A.B., Khanov L.N. et al. // Appl. Phys. Lett. 2016. V. 109. № 20. P. 202407. https://doi.org/10.1063/1.4968241
  17. 17. Pavlukhina O.O., Sokolovskiy V.V., Buchelnikov V.D. // Mater. Today: Proc. 2017. V. 4. № 3. P. 4642. https://doi.org/10.1016/j.matpr.2017.04.044
  18. 18. Павлухина О.О., Соколовский В.В. Бучельников В.Д., Загребин М.А.//ФТТ. 2018. Т. 60. № 6. С. 1122.
  19. 19. Ostanin S., Razee S.S.A., Staunton J.B. et al. // J. Appl. Phys. 2003. V. 93. № 1. P. 453. https://doi.org/10.1063/1.1523147
  20. 20. Pavlukhina O.O., Sokolovskiy V.V., Buchelnikov V.D., Zagrebin M.A. // J. Magn. Magn. Mater. 2019. V. 476. P. 325. https://doi.org/10.1016/j.jmmm.2018.12.095
  21. 21. Pavlukhina O.O., Sokolovskiy V.V., Zagrebin M.A., Buchelnikov V.D. // J. Magn. Magn. Mater. 2019. V. 470. P. 69. https://doi.org/10.1016/j.jmmm.2017.11.052
  22. 22. Hongzhi L., Zhiyong Z., Li M. et al. // J. Phys. D: Appl. Phys. 2007. V. 40. № 22. P. 7121. https://doi.org/10.1088/0022-3727/40/22/039
  23. 23. Mendonca A.A., Ghivelder L., Jurado J.F., Gomes A.M. // J. Magn. Magn. Mater. 2020. V. 531. Article No. 167965. https://doi.org/10.1016/j.jmmm.2021.167965
  24. 24. Pavlukhina O.O., Buchelnikov V.D., Sokolovskiy V.V. // Mat. Sci. Forum. 2016. V. 845. P. 138. https://doi.org/10.4028/www.scientific.net/MSF.845.138
  25. 25. Kresse G., Furthmuller J. // Phys. Rev. B. 1996. V. 54. № 16. P. 11169. https://doi.org/10.1103/PhysRevB.54.11169
  26. 26. Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. № 18. P. 3865. https://doi.org/10.1103/PhysRevLett.77.3865
  27. 27. Kresse G., Joubert D. // Phys. Rev. B. 1999. V. 59. № 3. P. 1758. https://doi.org/10.1103/PhysRevB.59.1758
  28. 28. Zotov N. // Intermetallics. 2008. V. 16. № 1. P. 113. https://doi.org/10.1016/j.intermet.2007.08.006
  29. 29. Shirane G., Nathans R., Chen C.W. // Phys. Rev. 1964. V. 134. № 6A. P. A1547. https://doi.org/10.1103/PhysRev.134.A1547
  30. 30. Belov M.P., Syzdykova A.B., Abrikosov I.A. // Phys. Rev. B. 2020. V. 101. № 13. P. 134303. https://doi.org/10.1103/PhysRevB.101.134303
  31. 31. Zagrebin M.A., Sokolovskiy V.V., Buchelnikov V.D. // J. Phys. D: Appl. Phys. 2016.V. 49. № 35. Article No. 355004. https://doi.org/10.1088/0022-3727/49/35/355004
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library